Source code for uxsim.utils

"""
General utilities for UXsim.
"""

import warnings
import functools
import traceback
import sys

import numpy as np
import matplotlib.pyplot as plt


[docs] def catch_exceptions_and_warn(warning_msg=""): """ A decorator that catches exceptions in the decorated function and raises a warning with the specified message. Parameters ---------- warning_msg : str, optional A custom message to be displayed along with the exception details. Default is an empty string. Returns ------- decorator A decorator that wraps the decorated function to catch exceptions and raise warnings. Notes ----- When an exception occurs in the decorated function, the decorator will raise a warning that includes: - The name of the function. - A custom message, if provided. - The type of the exception. - The exception message. - The filename and line number where the decorated function was called. This decorator is for inessential functions where random exceptions are expected (especially due to file I/O or something), but you want to avoid crashing the entire program and instead receive a warning. Mainly written by ChatGPT. """ warnings.simplefilter('default', category=UserWarning) warnings.formatwarning = lambda message, category, filename, lineno, line: f"{category.__name__}: {message}\n" def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: #warnings.warn(f"{func.__name__}(){warning_msg}: {type(e).__name__}: {str(e)}") current_frame = sys._getframe() caller_frame = traceback.extract_stack(current_frame, limit=2)[0] filename = caller_frame.filename lineno = caller_frame.lineno warnings.warn(f"{filename}:{lineno}:{func.__name__}(){warning_msg}: {type(e).__name__}: {str(e)}") return wrapper return decorator
[docs] def lange(l): """ Super lazy function for abbreviating range(len(l)) Parameters ---- l : list """ return range(len(l))
[docs] def printtry(*args, **kwargs): """ Print messages safely, evaluating any callable arguments and catching exceptions. Mainly written by GPT-4 Parameters ---------- *args : any The contents to print wrapped by lambda. E.g., lambda: (x, y, z) **kwargs : any Arbitrary keyword arguments. These are passed directly to the built-in print function. Examples -------- >>> printtry(lambda: (mylist[100], mylist[1000], mylist[10000])) >>> printtry(lambda: (mylist[100], mylist[1000], mylist[10000]), sep=";", end="!") """ try: # Evaluate each argument and print them evaluated_args = [arg() if callable(arg) else arg for arg in args][0] print(*evaluated_args, **kwargs) except Exception as e: # Print the exception if it occurs print("EXCEPTION:", e)
[docs] def get_font_for_matplotlib(fname=None): """ Get a multi-language (currently Japanese only) font for matplotlib. TODO: check if it works on different OS. It is only checked on Japanese Windows. TODO: explore if it can be extended for other languages. Returns ------- str The name of a Japanese font that is available on the system. If no Japanese font is found, "monospace" is returned. """ from matplotlib import font_manager font_list = font_manager.findSystemFonts() if fname is not None: font = fname elif any("Noto Sans Mono CJK JP" in font.lower() for font in font_list): font = "Noto Sans Mono CJK JP" elif any("msgothic" in font.lower() for font in font_list): font = "MS Gothic" else: font = "monospace" return font
[docs] def display_image_in_notebook(image_path): """ Display an image in Jupyter Notebook. Parameters ---------- image_path : str The path to the image file to display. """ from IPython.display import display, Image with open(image_path, "rb") as f: display(Image(data=f.read(), format='png'))
[docs] class LoggingWarning(UserWarning): """ This warns that when vehicle_logging_timestep_interval is not 1 but called vehicle logging-related functions. """ pass
[docs] def plot_multiple_y(x=None, ys=None, labels=None, **kwarg): """ Plot multiple y values on the same plot, normalizing each value to [0, 1]. Parameters ---------- x : array-like, optional The x values to plot. If None, the indices of the y values are used. Default is None. ys : list of array-like The y values to plot. labels : list of str, optional The labels for each y value. **kwarg : any Additional keyword arguments to pass to the plt.plot function """ if labels is None: labels = [f"data-{i}" for i in lange(ys)] for i,y in enumerate(ys): y_min = np.min(y) y_max = np.max(y) if x is not None: plt.plot(x, (y-y_min)/(y_max-y_min), label=f"{labels[i]}: [{y_min:.5g}, {y_max:.5g}]", **kwarg) else: plt.plot((y-y_min)/(y_max-y_min), label=f"{labels[i]}: [{y_min:.5g}, {y_max:.5g}]", **kwarg) plt.ylabel("normalized to [0, 1]") plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
[docs] def equal_tolerance(val, check, rel_tol=0.1, abs_tol=0.0): """ function for tests """ if check == 0 and abs_tol == 0: abs_tol = 0.1 return abs(val - check) <= abs(check*rel_tol) + abs_tol