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1 INTRODUCTION

Shared autonomous vehicle (SAV) systems can be an efficient transportation mode in the future (Fagnant and
Kockelman, 2015). In an SAV system, autonomous vehicles shared by the society will transport travelers by using
optimized routes and/or ridesharing matching. Thus, it will decrease number of vehicles and parking lots in a city
without sacrificing travelers utility.

Design of SAV systems involves various types of problems. The notable examples are vehicle routing problem with
pickup and delivery with time windows (VRPPDTW) (Mahmoudi and Zhou, 2016; Aiko et al., 2017), dynamic
ridesharing matching (Regue et al., 2016; Aiko et al., 2017; Thaithatkul et al., 2019), fleet size optimization
(Vazifeh et al., 2018), road network design and autonomous vehicle lane deployment (Chen et al., 2016), and
parking space allocation. In the previous studies, these problems were often solved separately. Furthermore, they
were often formulated by using computationally costly frameworks such as mixed integer programming.

The importance of trade-off relations among performance indexes of SAV systems has been noted, especially in
strategic levels. For example, an SAV system could be designed to minimize either user-side cost (e.g., passenger
travel time), system-side cost (e.g., operational cost), or social-side cost (e.g., environmental cost); these cases may
have completely different system design and cost allocation. Such trade-off relations can be explicitly investigated
by using the framework of multi-objective optimization problems (MOOP); however, to the authors’ knowledge,
application of MOOP to SAV system modeling is very limited.

This study proposes a unified MOOP for aggregated versions of VRPPDTW, dynamic ridesharing matching, fleet
size optimization, road network design, and parking space allocation of SAV systems based on dynamic traffic
assignment (DTA). The proposed problem is formulated as linear programming, making it very easy to solve.
Meanwhile, it approximates vehicles and travelers as continuum flow. These features will be useful for strategic
optimization of SAV operation and infrastructure design.

2 FORMULATION

The proposed problem is based on the maximal flow problem with a time-expanded network. Specifically, a road
network is modeled as a time-expanded network shown in Fig. 1. Then, vehicles and passenger flows, link capacity,
and node capacity in the expanded network are optimized under given time-dependent origin-destination (OD)
matrix of passengers.

The basic idea of the problem is as follows. Let xtij be the total number of SAVs that travel from node i to j at
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Figure 1: Left: standard network. Right: time-expanded network for dynamic traffic assignment

time step t. Let yk,ts,ij be the total number of travelers with certain properties (destination s, departure time k) that
travel from node i to j at time step t. Since travelers need to ride SAVs to travel, condition

∑
s,k y

k,t
s,ij ≤ ρxtij

must be satisfied, where ρ is a given passenger capacity of a SAV. Furthermore, xtij must be smaller than the
link capacity. Our objective is to find the most efficient yk,ts,ij and xtij and other decision variables under proper
constraints including the passenger capacity and the link capacity.

The problem is formulated follows:

[SOSAV] min (T, D, N, C) (1)

such that ∑
ij,s,t,k

tijy
k,t
s,ij = T (total travel time) (2)

∑
ij,i 6=j

dijx
t
ij = D (total distance traveled) (3)

∑
i

x00i = N (fleet size) (4)
∑
ij

cij(µij − µmin
ij ) +

∑
i

ci(κi − κmin
i ) = C (total construction cost) (5)

∑
j

xt−1
ji −

∑
j

xtij = 0 ∀i, t ∈ (0, tmax) (meaning: vehicle conservation) (6)
∑
j

yk,t−1
s,ji −

∑
j

yk,ts,ij + yk,ts,0i − y
k,t
s,i0 = 0 ∀i, s, k, t ∈ Tk (passenger conservation) (7)

∑
s,k

yk,ts,ij ≤ ρx
t
ij ∀ij, i 6= j, t (passenger capacity of SAV) (8)

xtij ≤ µij ∀ij, i 6= j, t (traffic capacity of link) (9)
xtii ≤ κi ∀i, t (parking capacity of node) (10)
yk,ks,0r =Mk

rs ∀rs, k (passenger departure) (11)∑
t∈[k,k+dmax]

yk,ts,s0 =
∑
r

Mk
rs ∀s, k (passenger arrival) (12)

∑
ij

cijµij +
∑
i

ciκi ≤ C (construction budget) (13)

and some technical constraints such as non-negative constraints (omitted due to the space limitation), where T
denotes the total travel time of passengers, D denotes the total distance traveled by SAVs, N denotes the total
number of SAVs, C denotes the total infrastructure cost, µij denotes the traffic capacity of link ij, κi denotes the
parking capacity of node i, Mk

rs denotes the time-dependent OD matrix, dmax denotes the maximum allowable
delay for travelers, tmax denotes the final time step, cij denotes the unit cost for traffic capacity expansion of link
ij, ci denotes the unit cost for parking capacity expansion of node i, α and β denote weight parameters, and
Tk = {t ∈ (0, tmax) ∩ (k, k + dmax]}.

The main decision variables are xtij (corresponds to VRPPDTWwith ridesharing), yk,ts,ij (VRPPDTWwith rideshar-
ing), N (fleet size problem), µij (link construction or SAV lane deployment problem), and κi (parking space
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(a) (T,D) domain. (b) (T,N) domain. (c) (T,C) domain.

Figure 2: Pareto frontiers.

allocation problem). Notice that these variables are in linear relationship in the problem. Thus, this is linear
programming. The computation time is polynomial to the number of links and time steps.

The MOOP finds the Pareto frontier in (T,D,N,C) domain, in which any of the objective function values cannot
be decreased without increasing the other(s). A decision-maker would select one of the solutions from the Pareto
frontier by considering the society’s policies and trade-off relations among the objective functions.

This problem can be considered as a point queue-based DTA with vehicle queuing on nodes with limited queue
length. The queue size on a node is constrained by (10); xtii can be interpreted as the sum of parking vehicles and
waiting vehicles on curbside. In fact, the problem can be considered as a variant of DTA-based optimal evacuation
problem of Kuwahara et al. (2017). The limitation of this problem is that it only computes aggregated link flows;
therefore, path flows and travel routes of individual travelers cannot be identified uniquely.

Problem [SOSAV] has useful policy implication on ridesharing. It is mathematically guaranteed that the optimal
values of T , D, N , and C of [SOSAV] are simultaneously and monotonically non-increasing by increasing the
passenger capacity ρ. Thus, ridesharing in [SOSAV] is always beneficial to average travelers as well as vehicle
operators, road authorities, and the environment in the proposed model. The proof is omitted from this abstract.

3 NUMERICAL EXAMPLES

To investigate the quantitative behaviors of the proposed model under somewhat realistic conditions, a numerical
experiment with actual travel data fromNewYorkCity (NYC)was conducted. The passenger demandwas generated
from the NYC taxi data (Taxi and Limousine Commission, 2020). The travel records of taxis from 8:00 to 9:00 on
2019-04-01 (Monday) in Manhattan were extracted. We assumed that these travel records were equivalent to travel
requests by SAV users in this area. The total number of passengers was 17,998. Then, the travel requests were
aggregated to the time-dependent OD matrixMk

rs with a 5 min time discretization width and a 30 min departure
time aggregation width. We used a zone-based network for DTA.

Pareto frontiers in two-dimensional domains are illustrated in Fig. 2. In these plots, the relation between two
objective values (i.e., T and one of the others) is shown where the rest of the objective values are fixed to certain
values (i.e., D = 60000, N = 3500, C = 100000). According to the figure, the trade-off relation between the
objectives were clearly found. Furthermore, by comparing the no-ridesharing cases (ρ = 1) to the two-person
ridesharing cases (ρ = 2) or five-person ridesharing cases (ρ = 5), the efficiency of ridesharing was evident.

Fig. 3 shows the spatial distributions of SAV flow (i.e.,
∑

t x
t
ij where i 6= j) in several Pareto efficient solutions.
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Figure 3: Spatial distribution of SAV flow under various conditions.

According to the figure, when the minimization of T was prioritized (left column), high SAV flow would be
observed to enable quick transportation of travelers. This high flow included travel of empty vehicles. Contrary,
when the other objectives were prioritized, the SAV flow would be significantly reduced. The introduction of
ridesharing (ρ = 2, lower row) also reduced the SAV flow.
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