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Abstract— Traffic state estimation (TSE), which reconstructs
complete traffic states from partial observation data, is an
essential component in intelligent transportation systems. In
this study, a novel traffic state estimation method using con-
nected vehicles and a single detector based on Kalman filtering
and Rauch–Tung–Striebel (RTS) smoothing is proposed. To the
author’s knowledge, while filtering is common approach for
TSE, smoothing has not been employed to TSE in the literature.
The important features of the proposed method are twofold.
First, thanks to RTS smoothing, it can estimate accurate traffic
state using a single detector, and it does not require detectors
in every entries and exits of a road section. In addition, the
estimation accuracy is not significantly sensitive to detector
location. Second, it does not require parameter calibration
thanks to the method’s data-driven nature. These features will
make the method flexibly applicable for practical conditions.
Estimation accuracy of the proposed method was empirically
evaluated by using actual vehicle trajectories data, and the
effectiveness of the above two features was confirmed.

I. INTRODUCTION

Traffic state estimation (TSE) [1], [2] is an essential
component in intelligent transportation systems. The most
popular approach for TSE is data assimilation that uses
filtering (e.g., Kalman filter and its variants) [2]. In data
assimilation approaches, heterogeneous traffic data collected
from different sources are combined by a traffic flow model
to reconstruct unobserved traffic states.

Implementation of TSE methods to actual traffic is still
challenging. The notable reasons would be twofold: difficulty
of parameter calibration and need of traffic detectors. Most
of TSE methods depend various types of parameters whose
calibration is not trivial or inessential. The notable examples
is fundamental diagram (also known as flow–density relation)
parameters such as free-flow speed and traffic capacity. In
this study, a calibration-free TSE method is developed by
data-driven approaches employed by the existing studies [3]–
[7].

Traffic detectors (e.g., loop detectors) generally provides
useful information for TSE, such as traffic counts and
occupancy. However, due to their high installation and main-
tenance cost, their practical availability is limited. In order to
enable detector-less TSE, many recent studies have proposed
use of connected vehicles (CVs) [2], [6], [8]–[10]. CVs can
be used to collect traffic speed information, and they are
ubiquitously available in entire road networks in these days.
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However, multiple number of detectors are still required
for accurate TSE by the CV-based existing methods [2], [6],
[8]–[10]. For example, Bekiaris-Liberis et al. [6], [7] have
proposed novel TSE methods based on Kalman filter using
CVs and small number of detectors. They have mathemat-
ically show that detectors are required at every entries and
exits in order to guarantee the theoretical observability of
traffic system. Furthermore, they have empirically shown that
TSE accuracy can be relatively poor if detector configuration
does not satisfy the aforementioned condition. These results
can be considered as a limitation of filtering-based TSE.

In order to overcome this limitation, this study proposes
combined use of smoothing and filtering, which has not been
utilized for TSE to the author’s knowledge. Smoothing is
a type of data assimilation, in which a state of a certain
time is estimated by using data collected in the future. We
will show that smoothing-based estimation is particularly
useful for TSE with single detector because of the nature of
information propagation in traffic flow. Note that smoothing
is not suitable for real-time or on-line TSE as it uses the
future information; however, it would be useful for number
of practical purposes such as ex-post or off-line evaluation
of traffic flow performance.

The aim of this research is to develop a filtering and
smoothing-based TSE method using single detector and CV
data, and to investigate the empirical performance of the
proposed method by using actual vehicle trajectories data.
Because of its simple mechanism, the proposed method can
be expected to be flexibly applicable for practical conditions.

II. METHOD

A. Kalman filter and RTS smoother

Kalman filter [11] and its variants (e.g., particle filters)
have been widely used as TSE methods [2]. In general,
it estimates traffic state at time step T (denoted by xT )
based on traffic data collected from time step 1 to T
(denoted as y1:T ) by maximizing the probability p(xT |y1:T ).
Thus, this approach is useful for on-line or real-time traffic
management.

However, for the purpose of off-line traffic management
(e.g., ex-post evaluation of traffic operation performance,
collecting historical congestion statistics), Kalman filter is
not optimal in the sense that it does not necessarily maximize
p(xt|y1:T ) where 1 ≤ t < T . In general, it is beneficial
if one can estimate xt that maximizes p(xt|y0:T ); this is
referred to as maximum a posterior (MAP) solution.

The combination of filtering and smoothing computes
MAP solution. Rauch–Tung–Striebel (RTS) smoother [12]
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Fig. 1: Detector location and its information propagation area
in filtering- or smoothing-based estimation.

Fig. 2: Cell-based discretization of traffic on a link.

is one of the typical methods for smoothing, applicable for
linear Gaussian state-space model. Despite this useful fact,
the RTS smoother or its variants have not been utilized for
TSE problems in the literature to the author’s knowledge.

By combining filtering and smoothing, a single detector
will become useful to estimate traffic state regardless of its
location, because of the nature of traffic flow (i.e., Kine-
matic Wave theory [13]–[15]). Specifically, filtering will be
useful to estimate forward moving waves of traffic, whereas
smoothing will be useful to estimate backward moving one
Fig. 1a. Smoothing is not applicable for real-time estimation;
however, it would be still useful for some practical purposes
such as ex-post evaluation.

B. System and observation models

We consider traffic on a link without intermediate entries
or exits. We discretize the link by time and space widths ∆t
and ∆x as in usual cell-based traffic flow models (Fig. 2).
Our objective is to estimate kni , the density in cell i at time
step n, based on k̂ni , the observed density by detector(s), and
vni , the observed traffic speed by CVs.

In this method, system’s dynamics and observation is

modeled by the following state-space model:

xn = fn(xn−1), (1)
yn = hn(xn), (2)

where xn denotes the system’s state at time step n, yn
denotes the observation at time step n, fn denotes the system
model at time step n, and hn denotes the observation model
at time step n.

The system’s state is specified as a traffic density in each
road segment:

xn = (. . . , kni , . . .). (3)

The observation is also specified as an observed traffic
density in road segments with detectors:

yn = (. . . , k̂ni , . . .). (4)

Note that if a detector measures the traffic count qni instead
of the density, the density can be obtained by combining the
traffic count and CV speed: k̂ni = qni /v

n
i .

The conservation law is employed as the system model
as in the existing studies [3]–[7]. It can be expresses as the
following partial differential equation

∂k

∂t
+
∂kv

∂x
= 0, (5)

where k(t, x) denotes the density at time t and location x,
and v(t, x) denotes the average speed at time t and location
x. We assume that CVs are ubiquitously available in the road
segment as in the existing studies [3]–[7]. Thus, v is known
regardless of t and x. Then, Eq. (5) can be numerically
computed by the upwind scheme as follows:

kn+1
i = kni +

∆t

∆x

(
kni−1v

n
i−1 − kni vni

)
, ∀i > 0 (6)

with parameters (. . . , vni , . . .), which is directly derived
from CV data. The upstream boundary (cell 0) is assumed
as

kn+1
0 = kn0 . (7)

The observation model is simply formulated as follows

kni = k̂ni , ∀i where detector is installed. (8)

Finally, by adding simple white noise terms, Eq. (3)–(8) can
be expressed as the following linear state-space model in a
matrix form without losing generality:

xn = Fnxn−1 + νn, (9a)
yn = Hnxn + ωn, (9b)

where Fn denotes the system model, Hn denotes the obser-
vation model,νn denotes the system noise such that νn ∼
N (0, Qn), and ωn denotes the additive observation noise
such that ωn ∼ N (0, Rn). The variance-covariance matrices
Qn and Rn are assumed as diagonal matrices with constant
values denoted by σ2

Q and σ2
R, respectively.



Fig. 3: TSE procedure by filtering and smoothing.

C. Filtering and Smoothing

By applying Kalman filtering and RST smoothing to
Eq. (9), we can estimate xn such that p(xn|y1:N ) is maxi-
mized where N denotes the final time step. In this procedure,
Kalman filtering computes a posterior distribution of the
state, whereas RTS smoothing computes MAP distribution.
The algorithm can be expressed as follows (due to the space
limitation, the minimum necessary information is provided
here. For the details, see the literature [11], [12], [16]).
Step 1 (Kalman Filtering): Set n = 1. Define the initial

conditions of time step 0.
Step 1.1: Computes a prior distribution of time step n:

xn|n−1 = Fnxn−1|n−1 (10)
Vn|n−1 = FnVn−1|n−1F

′
n +Qn (11)

Step 1.2: Computes a posterior distribution of time
step n:

Kn = Vn|n−1H
′
n(HnVn|n−1H

′
n +Rn)−1 (12)

xn|n = xn|n−1 +Kn(yn −Hnxn|n−1) (13)
Vn|n = Vn|n−1 −KnHnVn|n−1 (14)

Step 1.2: If n = N , go to Step 2. Otherwise set n :=
n+ 1 and go to Step 1.1.

Step 2 (RTS smoothing): Set n := N − 1.
Step 2.1: Computes MAP distribution of time step n:

An = Vn|nF
′
n+1V

−1
n+1|n (15)

xn|N = xn|n +An(xn+1|N − xn+1|n) (16)
Vn|N = Vn|n +An(Vn+1|N − Vn+1|n)A′n (17)

Step 2.2: If n = 0, halt the algorithm. Otherwise set
n := n− 1 and go to Step 2.1.

The notation in the algorithm is as follows: xn|n−1 denotes
the mean of a prior distribution of xn, Vn|n−1 denotes the
variance-covariance matrix of a prior distribution of xn,
xn|n denotes the mean of a posterior distribution of xn,
Vn|n denotes the variance-covariance matrix of a posterior
distribution of xn, Kn denotes the Kalman gain, xn|N
denotes the mean of MAP distribution of xn, and Vn|N
denotes the variance-covariance matrix of MAP distribution
of xn. The procedure of the proposed method is illustrated
in Fig. 3.

III. EVALUATION

A. Data

For the evaluation purpose, traffic data collected at an
urban expressway is used. The data is termed ZTD data
[17]. It is a complete vehicle trajectories dataset collected by
video cameras at 2 km length highway segment in Osaka,
Japan for 1 hour duration; to the author’s knowledge, this
is the most large-scale complete vehicle trajectories dataset.
Thus, it provides reliable, large-scale ground truth traffic
states and simulated traffic detector and CV data. The ground
truth traffic density is shown in Fig. 4a as a time–space
diagram. Various traffic conditions, such as free-flowing
traffic, congested traffic, series of stop-and-go waves, were
observed. For the technical details on ZTD data, see [17],
[18].

B. Results

The values of parameters are set as follows: ∆t = 4
(s), ∆x = 100 (m), σQ = 0.01 (veh/m), and σR = 0.001
(veh/m),

In order to investigate the accuracy of dynamic traffic state
reconstruction of the proposed method, time-space diagrams
of the estimated densities are shown in Fig. 4. Figure 4b
shows the estimated densities when a detector is installed
at the upstream boundary of the section, whereas Fig. 4c
shows the estimated densities when a detector is installed
at the downstream boundary of the section. According to
the figures, the both of the estimation results are very
similar to the ground truth (Fig. 4a). For example, the both
results accurately reconstructed the free-flowing traffic, the
congested traffic, and the series of stop-and-go waves.

In order to investigate the effect of the detector location
and the RTS smoothing, the relation between the detector
location and the overall performance of the proposed method
(measured by mean absolute percentage error (MAPE)) is
summarized in Fig. 5. According to the figure, the accuracy
of the conventional method (without RTS smoothing) became
significantly low if a detector was placed at downstream
locations. On the other hand, the proposed method (with RTS
smoothing) substantially mitigated the accuracy degradation.
In fact, the accuracy was not at all decreased if a detector
was placed at the middle of the section.

IV. CONCLUSION

In this study, a traffic state estimation method using
connected vehicles and a single detector based on Kalman
filtering and RTS smoothing is proposed. The important
features of the proposed method are twofold. First, it does
not require parameter calibration thanks to the method’s data-
driven nature. Second, it can estimate accurate traffic state
using a single detector, and it does not require detectors
in every entries and exits of a road section thanks to RTS
smoothing. In addition, the estimation accuracy is not sig-
nificantly sensitive to detector location. These features were
empirically confirmed by actual vehicle trajectories data.

The most important future work is network extension. It
will enable estimation of traffic states in links without any



(a) Ground truth

(b) Estimates with upstream detector

(c) Estimates with downstream detector

Fig. 4: Time–space diagrams of density. The right is the future and the top is the downstream.

Fig. 5: Detector location and effects of smoothing. x = 0 (m)
is the upstream end and x = 1000 (m) is the downstream
end.

detectors. This would be accomplished by estimating route
choice ratio of traffic from CV’s trajectories as proposed by
[19]. Another important problem is mathematical analysis
on theoretical observability similar to [7]. Incorporation
of automatic fundamental diagram estimation using CV’s
trajectories [20] would also be considerable to improve the
accuracy.
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