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ABSTRACT
The trial-and-error approach for congestion pricing finds the optimal toll based only on observable
information (e.g., travel time, traffic state) without information on travelers’ personal preferences
that are often unobservable in practice (e.g., value of time, demand function). This featuremakes the
method practically useful by solving the well-known issue of “information asymmetry” between
the system administrator and the consumers. This paper proposes trial-and-error schemes for
the departure time choice problem (also known as the morning commute problem and Vickrey’s
bottleneck model). We theoretically show that our proposed schemes find the optimal toll in some
standard departure time choice problems. Specifically, following cases are considered: fine toll for
the homogeneous α–β–γ case, fine toll for the homogeneous case with a non-linear waiting time
cost function or a non-linear schedule cost function, and coarse tolling for the homogeneous case
with elastic demand. For the first problem, our scheme finds the exact optimal fine toll by one trial.
For the second problem, our scheme finds the approximate optimal fine toll by one trial. For the
last problem, our scheme converges to the social optimal state fairly quickly.



Seo and Yin 2

INTRODUCTION
Congestion pricing is an effective way to alleviate traffic congestion and improve social welfare
in transportation systems (1, 2, 3). Social optimum can be achieved by congestion pricing if
system administrators know travelers’ personal attribute and travel preference such as value of
time (VoT) and demand functions. However, such attribute and preference are often unobservable
to system administrators, and congestion pricing with inaccurate estimates will not achieve the
social optimum and may degrade the system efficiency. In economics, this issue is referred to as
“information asymmetry” between consumers and administrators (4). It makes congestion pricing
schemes difficult to implement in practice.

To account for this challenge, several approaches have been proposed in the literature,
among which, the trial-and-error pricing approach is widely investigated. In this approach, a
tolling authority iteratively updates the tolls based on current traffic states. If a proper updating
method is applied, the tolls will converge to the optimal tolls, and thus the social optimum will be
achieved without knowing personal preference and attribute. Since traffic states are easy to observe
or infer (5), a trial-and-error pricing scheme would be a practical solution to the information
asymmetry problem. Li (6) proposed a trial-and-error pricing scheme for static traffic in a link
with an unknown demand function, and then Yang et al. (7) extended it to general road networks.
Additionally, Yang et al. (8) incorporated unknown cost functions to this framework so that travelers’
VoT is not required to be known. Furthermore, Ye et al. (9) developed a trial-and-error pricing
scheme for static network traffic considering day-to-day dynamics, instead of assuming route choice
is always equilibrated as in (7, 8). Other approaches that tackle the information asymmetry issue are
the evolutionary game theoretical approach in static network traffic (10), self-learning approach for
high-occupancy/toll lanes management (11), an application of the tradable mobility credit scheme
in a bottleneck (12), and the tradable bottleneck/network permit schemes in dynamic traffic (13, 14).

The departure time choice problem, also known as the morning commute problem and
Vickrey’s bottleneck model, is a well-known transportation problem and has been extensively
studied in the literature (2, 15, 16, 17). The problem is simple, but remains a valid representation
of rush-hour traffic congestion. In a typical departure time choice setting, travelers have to choose
their departure time to travel between a single origin and a single destination, which are connected
by a single road with a bottleneck. As the travelers desire to arrive the destination in similar
time but the road capacity is limited due to the bottleneck, a waiting queue will be formed at the
bottleneck if there were no management. If a proper toll is charged, the queue can be eliminated,
and thus the social optimal state can be achieved. However, to directly obtain the optimal pricing,
precise knowledge on travelers’ preference, such as VoT, is required. Therefore, the information
asymmetry issue exists in the case of the departure time choice problem.

This study proposes trial-and-error schemes that find the optimal toll in the departure time
choice problems under the information asymmetry. The observable information is the queueing
pattern, namely, time-varying waiting time. The unobservable information is travelers’ personal
preference, namely, travel time cost functions, schedule cost functions, desired arrival time, and
demand function.

It is noteworthy that Vickreymade following remark, entitled “Trial and Error in Congestion
Charge Optimization”, in his non-technical monograph published in 1993 (18):

In the case of queues that occur at toll bridges and tunnels, ... these delay times can be
multiplied by an estimated average value of delay time per vehicle, and the result used
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as an initial differential toll schedule. Subsequent adjustments can be made by raising
the toll at times of day when there is usually a substantial queue, and lowering the toll
at times of day when the flow typically falls below capacity.

Our study can be considered as a formalization of this idea in the context of the departure time
choice problem and extension to elastic demand cases.

The rest of this paper is organized as follows. First, the problem statements are introduced.
Then, we propose a trial-and-error pricing scheme for the simplest case of the departure time choice
problem (i.e., homogeneous α–β–γ model), and show that the scheme finds the optimal toll very
efficiently. Subsequently, we propose other trial-and-error schemes for several generalized cases of
the departure time choice problems (e.g., non-linear cost functions, elastic demand and second-best
toll). Finally, achievements and possible future works are summarized in Conclusion section.

THE DEPARTURE TIME CHOICE PROBLEM AND TRIAL-AND-ERROR PRICING
SCHEME
The departure time choice problem
The definition of the departure time choice problem in this study is as follows. We use the standard
formulation of the problem based on the arrival time to the destination as in, for example, (19). The
generalized private cost of a traveler is defined as

c(t, t∗) = cw(w(t)) + cs(t, t
∗) + τ(t), (1)

where t denotes the arrival time at the destination, t∗ denotes the desired arrival time, cw(w) denotes
the cost function associated with waiting time w, w(t) denotes the waiting time, cs(t, t∗) denotes
the schedule cost function, and τ(t) denotes the toll. The capacity of a bottleneck is constant and
denoted by s. The queuing discipline follows the first-in first-out principle. The number of travelers
is denoted by N and may or may not be constant (i.e., demand may be elastic). The travelers are
homogeneous, meaning that every travelers have the identical cw and cs. Once τ(t) is given, the
traffic quickly reaches the Wardropian equilibrium (20). Note that this means that we assume that
the day-to-day dynamics of the departure time choice problem is stable, which, however, is being
questioned recently in the literature (21, 22, 23, 24, 25, 26). However, this issue is out of scope of
this study, as it is still an open question.

Trial-and-error pricing scheme
A trial-and-error pricing scheme is loosely defined as a procedure that finds the optimal toll by
an iterative procedure that is based on the observable information. In this case, the observable
information is the waiting time w(t), the capacity s, and the realized demand N (more precisely,
the cumulative arrival and departure curves). The procedure can be loosely described as

Step 1 The administrator charges a time-varying toll τ(t) based on the current observable
information, namely, w(t), s, and N .

Step 2 Some days later, traffic converges into a new departure time choice equilibrium state
that reflects the toll. The administrator observes new w(t) and N .

Step 3 The administrator updates the toll τ(t) based on a pre-determined rule that uses the
current observable information w(t), s, and N .
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Step 4 Go back to Step 2 until w(t) converges to the social optimal state.

In order to formulate a trial-and-error scheme, it is necessary to design the updating method and
show the convergence to the social optimal state, under particular underlying conditions on the
departure time choice problem.

THE SIMPLEST CASE
In this section, we show that a trial-and-error scheme finds the optimal toll in the homogeneous
α–β–γ model very efficiently.

Specification of the departure time choice problem
We assume that

• The traveler behavior is described by the homogeneous α–β–γ model, in which the cost
functions are defined as

cw(t) = αw(t), (2)

cs(t, t
∗) =

{
β(t∗ − t) if t < t∗,
γ(t− t∗) otherwise, (3)

where α denotes the VoT, β denotes the early arrival penalty, and γ denotes the late arrival
penalty. Conditions α > β > 0 and γ > 0 are assumed.

• The desired arrival time of all the travelers is common.

• The number of travelers is denoted by N and is fixed.

• The road administrator knows that the traveler follows the homogeneous α–β–γ model but
do not know the parameter values.

It is commonly known that the equilibrium in this problem can be easily derived by using a simple
technique called “isocost curve” (19, 27). The isocost curve can be defined as y(t) = −cs(t)−τ(t).
The waiting time cost at equilibrium can be expressed as y(t) + c where c denotes the generalized
travel cost at equilibrium, and the waiting time itself can be expressed as (y(t) + c)/α. For the
details on the isocost curve method, see, for example, Lindsey (19). The no-toll equilibrium
queueing pattern in this model is illustrated in Figs. 1a and 1b using time-based and cost-based
isocost curves, respectively; note that in this paper we use time-based and cost-based isocost curves
depending on the context. Figs. 1a and 1b mean that a triangular queueing pattern is observed in
no-toll equilibrium.

It is also widely known that the social optimal is realized by charging a time-varying
congestion toll that is also triangular as shown in Fig. 1c. In the other words, the optimal toll can
be identical to the queueing time cost in Fig. 1b. Therefore, the VoT α is required to find the social
optimal toll; however, due to the information asymmetry, the VoT is difficult to observe.
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(a) Isocost curve (queueing time-based)

(b) Isocost curve (monetary cost-based)

(c) Optimal toll

FIGURE 1 : The homogeneous α–β–γ model.

Trial-and-error pricing scheme
We propose a trial-and-error pricing scheme that finds the optimal toll without external knowledge
on VoT α. The scheme charges a particular trial toll first, and then find the optimal toll based on
the equilibrium pattern under the trial toll.

As shown in Fig. 1, we know that the optimal toll has similar shape with the no-toll queueing
time: a triangle whose vertexes are at (t, cost) = (tE, 0), (tL, 0), and (t∗, αtmax)where tmax denotes
maximum waiting time, and α is unknown to the administrator. By leveraging this knowledge, the
optimal toll can be found by the following procedure.

Suppose that the administrator charges a triangular trial toll whose vertexes are at (t, cost) =
(tE, 0), (tL, 0), and (t∗, τmax) where τmax is an arbitrary positive value that represents the maximum
price of the toll, as illustrated in Fig. 2. Since τmax is given arbitrary, this trial toll is not likely
to be optimal. It is either under-priced (τmax < αtmax), over-priced (τmax > αtmax), or optimal
(τmax = αtmax). Although the administrator does not know which is the case in prior, s/he can
eventually know it based on the observed new equilibrium queueing pattern as explained in later.

Assume that the toll is under-priced. The new equilibrium queueing pattern under an
under-priced toll can be represented as Fig. 3. The new maximum queueing time is denoted by
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FIGURE 2 : A trial toll in the simplest homogeneous case. θE = τmax/(t
∗ − tE) and θL =

τmax/(tL − t∗).

FIGURE 3 : Queueing pattern with an under-priced toll in the simplest homogeneous case.

t̂max. Now, it is obvious that

tmax =
τmax

α
+ t̂max (4)

holds. Therefore, the value of α can be directly derived as

α =
τmax

tmax − t̂max

. (5)

Notice that tmax, t̂max, τmax are observable. Note that the existence and uniqueness of equilibrium
under this trial toll (as well as the other trial tolls discussed in the later of this paper) are guaranteed
(19).

Contrarily, assume that the toll is over-priced. In this case, a new queueing pattern can be
represented as Fig. 4. It can be found that the traffic is not flowing around time t∗, because the toll
during the peak period is too expensive. From this observation, the administrator can notice that
the trial toll is over-priced. The value of α in this case is derived as

α =
tmax − t̂max

t2max

τmax (6)

from the observable information.
In summary, the administrator can derive the VoT α regardless of whether the trial toll is

under-priced or over-priced (or incidentally optimal). As consequence, the administrator can charge
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FIGURE 4 : Queueing pattern with an over-priced toll in the simplest homogeneous case.

the optimal toll in the next step. The social optimal is achieved without knowledge on personal
preference, namely, VoT, scheduling cost, and desired arrival time. The procedure is summarized
as follows:

Step 1 Measure tE , t∗, tL from the no-toll equilibrium waiting time. Let tmax be the current
maximum queueing time.

Step 2 Charge a trial toll shown in Fig. 2 with arbitrary positive τmax.

Step 3 Measure the newmaximum queueing time t̂max under the trial toll. Check the following
cases.

If there is one queue: The trial toll is under-priced. Derive α by Eq. (5).
If there are two queues: The trial toll is over-priced. Derive α by Eq. (6).
If there is no queue: The trial toll is socially optimal. Derive α by τmax/tmax.

Step 4 Charge the social optimal toll with τmax := αtmax.

It is noteworthy that this process requires only one trial. Given the definition of the
trial-and-error scheme, one trial is the minimum possible number of trials. A trial-and-error
scheme with small number of trials is more desirable because, in actual implementation, each trial
requires a considerable length of duration in order to get the day-to-day dynamics converged. In this
sense, the proposed scheme can be considered as one of the most efficient trial-and-error schemes
to find the optimal fine toll in the homogeneous α–β–γ model.

EXTENSIONS
In this section, several extensions of the homogeneous α–β–γ model is considered. Specifically,
trial-and-error pricing schemes for cases with distributed desired arrival time, non-linear schedule
cost function, non-linear waiting time cost function, and second best pricing for elastic demand,
respectively, are proposed.
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FIGURE 5 : Non-linear waiting time cost function.

Distributed desired arrival time or unknown non-linear schedule cost function
In general, the desired arrival time may be distributed rather than fixed at t∗, or the desired arrival
time may be non-linear. However, these features do not change our problem substantially. It is
trivial to show that a scheme similar to that in the simplest case (i.e., charge a trial toll whose
shape is similar to the no-toll equilibrium queueing time, and then derive VoT by comparing the
maximum queueing time before and after the toll) can derive the VoT. The difference is that VoT
may not be able to derivable if a trial toll is over-priced; therefore, the administrator need to set a
trial toll inexpensive.

Unknown non-linear waiting time cost function
Non-linear waiting time cost function with unknown functional form is considered. In general,
waiting time cost may not be linear due to behavioral or psychological reasons (28) (e.g., people
may detest too long waiting time, meaning that the waiting time cost function may be convex as
shown in Fig. 5), and even its functional form may be unknown. Under this condition, the scheme
for the simplest case cannot be applied because the concept of VoT no longer exists. Nevertheless,
it is possible to approximate the optimal toll by another trial-and-error scheme as follows.

Let w(t) be the equilibrium waiting time in the no-toll equilibrium. Suppose that the
administrator charges an under-priced trial toll, denoted by θ(t), and new equilibrium waiting time
ŵ(t) is observed. Note that if a toll is over-priced, the administrator will observe multiple queues
as in the simplest case; therefore, the administrator can notice that the toll is over-priced and thus
select less expensive toll in the next iteration. In the under-priced situation, the following condition
is satisfied because of the feature of the cost-based isocost curves as shown in Fig. 6:

cw(w(t))− cw(ŵ(t)) = θ(t), ∀t ∈ [tE, tL]. (7)

The values of w(t), ŵ(t), θ(t) are observable. Note that cw(w(t)) > cw(ŵ(t)) > 0 for t ∈ (tE, tL)
and w(t) > ŵ(t) for t ∈ (tE, tL) hold because the toll is under-priced.

We can then approximate cw(w) in w ∈ [0,maxw(t)] as a piecewise function based on
Eq. (7) and observed w(t), ŵ(t), θ(t) as follows. First, note that cw(0) = 0 holds and assume
that cw(∆w) − cw(0) = δ∆w with small ∆w and δ = limt→tE+0

cw(w(t))−cw(ŵ(t))
w(t)−ŵ(t)

hold. Then, the
value of cw(w) on some discrete w can be sequentially computed by Eq. (7) and the above initial
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(a) Equilibrium waiting time cost under a no-toll and an under-priced
toll

(b) Observable information regarding
waiting time cost function

FIGURE 6 : Estimation of non-linear waiting time cost function.

states. Finally, the function cw can be estimated by interpolating the computed points. Based on
the estimated cw, the administrators can charge an approximate optimal toll.

Second best pricing for elastic demand
Now we consider a coarse toll (also known as step-toll) for the case with elastic demand in the
α–β–γ model with fixed t∗ and a coarse toll. This problem setting is of practical importance
(17, 29) and thus worths investigating in the context of trial-and-error pricing. A coarse toll is a
well-known type of second best toll and is considered as practically easy to be implemented because
of its operational simplicity compared with a fine toll. (Note that a fine toll with elastic demand is
identical to that with fixed demand; therefore, it is obvious that the trial-and-error scheme discussed
in the previous sections finds the optimal toll.)

A coarse toll is defined as

τ(t) =

{
τH if tHE ≤ t ≤ tHL

τL otherwise, (8)

where τH and τL represent the toll in the peak hour and the off-peak hour, respectively, and tHE

and tHL represent the beginning and the end, respectively, of the peak hour. An example is shown
in Fig. 7a along with an equilibrium pattern. An elastic demand is defined as

N = D(p) (9)

whereD(p) represents an unknown demand function with generalized travel cost p and is assumed
to be monotonically decreasing.

According to Arnott et al. (17), a coarse toll under elastic demand is socially optimal if and
only if

cA = τA, (10)

where cA represents the average travel cost (sum of the waiting time cost and scheduling cost)
among every travelers and τA represents the average toll among every travelers. This is a marginal
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(a) Isocost curves under coarse toll

(b) Elastic demand, average travel cost, and marginal social cost

FIGURE 7 : Coarse toll with elastic demand.

cost pricing, because the marginal social cost is identical to 2cA (see Fig. 7b). Arnott et al. (17)
also showed that cA and τA under given demand N can be expressed as

cA =
1

4

βγ

β + γ

(
3− (γ − α)β

(β + γ)(α + β)

)
N

s
, (11)

τA =
(tHL − tHE)τH + (tL − tE − tHL + tHE)τL

tL − tE
, (12)

and the optimal coarse toll under the optimal coarse toll with given demandN must satisfy following
conditions:

τH − τL ≡ ρ =
βγ

2(β + γ)

N

s
, (13)

tE = t∗ − γ

β + γ

N

s
+

(γ − α)ρ

(β + γ)(α + γ)
, (14)

tHE = tE +
ρ

β
, (15)

tHL = tE +
N

s
− 2ρ

α + γ
. (16)

A trial-and-error pricing scheme needs to find the optimal toll by iteratively updating τH ,
τL, tHE , and tHL. In this study, a scheme that consists of two phases is proposed. The first phase
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is time preference derivation phase; it is similar to the trial-and-error scheme for the fixed demand
proposed in the previous sections. The second phase is demand adjustment phase.

In the time preference derivation phase, the travelers’ time preference, namely t∗, α, β,
γ, is inferred. The desired arrival time t∗ can be easily inferred as the peak waiting time. The
other variables are inferred by charging a trial coarse toll similarly to the previous schemes. Let
a “step-height” of a trial coarse toll be ρ̂, travel time at t ∈ [tHE, tHL] under the trial toll be t̂p,
and travel time of the same t in the no-toll case be tp. Note that ρ̂, t̂p, and tp are observable. The
relation among them is derived as

ρ̂

α
+ t̂p = tp. (17)

Thus, we get

α =
ρ̂

tp − t̂p
. (18)

Then, the values of β and γ can be derived from α and the queue evolution speed; specifically, the
queue evolution speed dw(t)/dt is β/α if tE ≤ t < t∗ and is −γ/α if t∗ < t ≤ tL as illustrated in
Fig. 1a.

The additional challenge compared to the previous schemes is that the demand is elastic with
an unknown functional form. This is solved by the demand adjustment phase as follows. As shown
in Fig. 7b, the demand function is monotonically decreasing, the marginal cost is always as twice as
the average travel cost, and thus the social optimal is achieved if Eq. (10) is satisfied. Suppose that
the administrator charges a trial toll with arbitrary τL with τH = 0 (i.e., uniform toll). Since α, β, γ
are known by the previous phase, it is possible to compute cA and τA under the currentN and τL by
Eqs. (11)–(16), and thus it is possible to determine whether the current toll is over-priced (cA < τA)
or under-priced (cA > τA). Therefore, because of the monotonicity of the demand and the marginal
cost functions, the optimalN can be found by the bisection method (i.e., a simple numerical method
to solve an equation) that iteratively updates τL. Specifically, let τUP

L be the trial toll of the most
recent iteration that is under-priced, and τOP

L be the trial toll of the most recent iteration that is
under-priced. The trial toll in the next iteration is determined as τnewL = (τUP

L + τOP
L )/2. Then,

substitute τUP
L or τOP

L with τnewL depending on whether τnewL is under-priced or over-priced, and
repeat the procedure. Because of the monotonicity, this procedure is guaranteed to converge to the
optimal toll. This bisection method can be directly used as a trial-and-error scheme as in (6, 7),
because it does not require the knowledge on the demand function except for the monotonicity.

The procedure of the proposed trial-and-error scheme can be summarized as follows:

Step 1 [Time preference derivation phase] Charge a trial coarse toll. The value of α and t∗
can be determined from the new equilibrium pattern (Eq. (18)). Subsequently, the values of β
and γ can be determined. Set τL = 0.

Step 2 [Demand adjustment phase]

Step 2.1 Charge a uniform toll (i.e., τL = τH ≥ 0) with current τL. Measure the realized
demand N .
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Step 2.2 From the known information, a virtual average travel cost under the optimal
coarse toll, denoted as ĉA, and the mean of the optimal coarse toll, denoted as τ̂A, in the
current demand can be computed (Eqs. (11)–(16)).
Step 2.3 Check ĉA ' τ̂A with some convergence criteria. If it is true, go to Step 3. If it is
false, use the bisection method to update τL and go back to Step 2.1 (essentially, increase
τL if ĉA > τ̂A, or decrease τL otherwise).

Step 3 Charge an approximate optimal coarse toll by determining the optimal τH , tHE , and
tHL by the current τL and Eqs. (13)–(16).

A result of a numerical experiment of the proposed scheme is shown in Fig. 8. According to
Fig. 8a, we can confirm that the toll quickly converges to the social optimal state (i.e., τ̂A = ĉA). It
means that even if the administrator terminates the trial-and-error process with a mild convergence
criteria, the social welfare will be substantially improved. Figure 8b shows the isocost curve in the
converged state; it approximately satisfies the social optimality.

CONCLUSION
This study proposes trial-and-error schemes for optimal pricing in the departure time choice
problems. The advantage of trial-and-error schemes is that it does not require precise information
on travelers’ personal preferences (i.e., waiting time cost function, schedule time cost function,
demand function), which are difficult to observe in practice. Some particular departure time choice
problems are considered: the homogeneous α–β–γ model, cases with non-linear, unknown waiting
time cost function and schedule cost function, and second best tolling in elastic demand cases. We
theoretically show that the proposed schemes quickly find the optimal toll in these cases. Especially,
only one trial is required to find the fine toll in the homogeneous α–β–γ model; this means that the
proposed scheme is one of the most efficient trial-and-error schemes for this problem.

Several further extensions are worth considering. First, extension to heterogeneous
commuter cases (27) is valuable. This is because heterogeneity is an important issue in the
departure time choice problem although it is unobservable to road administrators. Second, explicit
consideration of day-to-day dynamics (instead of assuming that the day-to-day dynamics always
converges) is important as Ye et al. (9) did in the static network traffic case. For this purpose, the
reinforcement learning would be useful, since it is an efficient way to implement trial-and-error
procedures. From a theoretical point of view, this could be a challenging task that involves the
stability of the dynamics, which is receiving attention in the recent literature (21, 22, 23, 24, 25, 26);
from an application point of view, it enables us to develop a fast-converging pricing scheme in
real-world implementation. This study can provide a stepping stone to these future extensions.
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(a) Trial-and-error process

(b) Isocost curve and toll in the converged state

FIGURE 8 : Numerical example of the coarse tolling with the elastic demand. The model
specification: D(p) = η/p with η = 1000 (person/cost), s = 2000 (veh/h), α = 1 (cost/h), t∗ = 0,
β = 0.5 (cost/h), γ = 1.2 (cost/h).
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