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Abstract

This article proposes a framework for an interactive activity-travel survey method, implementable on mobile devices
such as smartphones. The proposed method was developed to reduce the burden (i.e., frequency of questions) on
respondents in long-term behavioral surveys, without relying on external data sources. The method employs an online
travel context estimation model and an online machine learning method as interactive processes. The estimation
model is used for automatically estimating travel contexts during surveys, while the online machine learning method is
used for dynamically updating the estimation model, based on answers from respondents. The proposed method was
examined by simulations using data obtained from a past probe person survey. The results suggest that the frequency
of inputs by respondents in surveys can be significantly reduced, while maintaining high accuracy of the obtained
data. For example, the method successfully estimated certain types of trips (e.g., commuting) and the behaviors of
certain respondents (e.g., those whose activity-travel pattern is recurrent) because of the learning process and reduced
survey burden on them. Meanwhile, although the method could not always precisely estimate some other types of
trips, it eventually obtained accurate results because of the interaction process. Therefore, the proposed method could
be useful to reduce the burden on respondents in long-term surveys, while maintaining high data quality and capturing
traveler heterogeneity.

Keywords: activity-travel survey, behavioral context inference, traveler heterogeneity, GPS, smartphone, naïve
Bayes classifier

1. Introduction

Activity-travel survey methods with tracking devices have been developed since the late 1990s as effective methods
to collect behavioral data. In these surveys, trajectories of survey respondents are automatically collected by mobile
instruments such as the Global Positioning System (GPS). Internet web-based diaries, synchronized with the data from
mobile instruments are used to complement the detailed information on trips and activities. Compared to traditional
surveys like person trip surveys and paper-based diary surveys, the mobile instruments improve the observation period
and resolution in both space and time dimensions significantly (Murakami and Wagner, 1999).

However, even if such mobile instruments are applied to a survey, survey respondents are still required to manually
input the detailed activity-travel information because the information obtained from the instruments does not directly
contain activity-travel attributes and behavioral contexts. Typical examples of such behavioral contexts are the trip
purpose (or equivalently, activity type), travel mode, transport-related fare, and travel companion(s). Therefore, much
time and effort is still required for the respondents as the survey period becomes longer. As a consequence, the
number of respondents in most tracking surveys remains less than a thousand, and survey duration, less than a few
months (e.g., Murakami and Wagner, 1999; Draijer et al., 2000; Wolf et al., 2001; Asakura and Hato, 2004). These
situations show the difficulties associated with collecting day-to-day data for continuous long-term periods via these

∗Corresponding author
Email addresses: t.seo@plan.cv.titech.ac.jp (Toru Seo), t.kusakabe@csis.u-tokyo.ac.jp (Takahiko Kusakabe),

asakura@plan.cv.titech.ac.jp (Yasuo Asakura)

Preprint submitted to Special Issue of Selected Papers from IATBR2015 November 15, 2017



surveys. Reasons for such difficulties include costs, processing load, inaccuracy, and privacy protection of respondents
(Kitamura, 1990; Axhausen et al., 2007). In summary, it is still difficult to collect large-scale individual activity-travel
data for a long duration, although such data is very useful to estimate long-term activity-travel behavior (Kitamura
et al., 2003; Arentze and Timmermans, 2009; Bhat et al., 2013).

To resolve these problems, many existing studies have attempted to automatically complement behavioral contexts
to the data obtained frommobile instruments and passive data collection methods. In this article, trip purpose inference
is considered particularly, because of its importance and the associated current research gaps. Note that trip purpose
inference is almost equivalent to activity type inference. In existing studies, Auld et al. (2009) proposed a prompted
recall survey assisted by GPS and activity inference. Shen and Stopher (2013) developed a trip purpose imputation
method for GPS data based on household travel survey data. Cottrill et al. (2013) and Kim et al. (2014) developed
methods to automatically estimate travel attributes on a web-based diary system from mobile instrument and historical
behavioral data. Hasan et al. (2013) and Hasan and Ukkusuri (2014) proposed activity pattern classification methods
using geo-location data in online social media. Oliveira et al. (2014) developed a trip purpose identification method
based on GPS and a discrete choice model to incorporate various types of information. Washington et al. (2014)
applied a Bayesian inference method based on small-scale survey data to impute non-chosen attributes in large-scale
data. Kusakabe and Asakura (2014) and Kusakabe et al. (2016) developed a trip purpose estimation method for transit
smart card data based on the person trip survey data and naïve Bayes classifier, and applied in Japan and Australia.
Alexander et al. (2015) presented methods to estimate number of trips and their purposes from call digital record and
census data. Siripirote et al. (2015) proposed use of plate scanning and traffic count data to calibrate an activity-based
model. The notable feature of this method is that it is not based on sampling nor offline information; however, it is only
applicable to trips with personal cars. Xiao et al. (2016) developed a trip purpose estimation method using land-use
data and GPS traces. Han and Sohn (2016) also developed an activity imputation method using land-use data and
smart card data. For comprehensive reviews on these topics, see Shen and Stopher (2014), Rasouli and Timmermans
(2014), Gong et al. (2014), and Prelipcean et al. (2017).

The aforementioned existing trip purpose inference methods (except for Siripirote et al. (2015)) depend on offline
common information (e.g., land-use, census data) and/or predetermined parameters of discriminant functions (e.g.,
behavioral model) for behavioral contexts (e.g., trip purpose) which model relations between behavioral contexts and
observable real-time information (e.g., GPS traces). Although the use of such predetermined relations is beneficial to
reduce the survey burden on respondents, some limitations could arise as a result. First, preceding data acquisition is
required to derive and calibrate the relations. Second, traveler heterogeneity may be ignored; in reality, the relations
can vary among travelers and change dynamically, depending on lifestyles and environment. Third, the accuracy of
inference during actual surveys is difficult to be guaranteed or assessed. These limitations can be problematic for
certain surveys, such as those conducted after significant changes in the built environments, those intended to consider
diversity in the society, and those conducted in developing countries.

The aim of this article is to develop a mobile-phone-based behavioral context inference method that requires no
preceding data acquisition, and captures traveler heterogeneity and dynamical behavioral changes. To achieve this,
this article proposes a framework for an interactive activity-travel survey method implementable on mobile devices
such as smartphones. In order to adapt the method for long-term activity-travel surveys with less burden, the method
employs an online behavioral context estimation model and an online machine learning method with an interactive
process. The estimation model is for automatically estimating behavioral contexts (specifically, trip purpose) during
surveys. The learning method is used for updating the estimation model to adapt the model to observed activity-travel
behaviors based on interaction with the respondents. The interactive process between a survey system and a respondent
is continued during the survey period, as explained by the following. The system automatically estimates a behavioral
context, and occasionally raises questions for an actual behavioral context depending on the confidence level of the
estimation results. Based on the answer of the respondent, the method updates the estimation model. Comparing with
conventional travel diary survey methods, the proposed method is expected to reduce the frequency at which survey
respondents are required to input information. On the other hand, contrary to conventional offline estimation processes,
the proposed method is expected to automatically update and adapt the estimation model to current situations of the
respondents themselves. Moreover, the accuracy of the method can be controlled by selecting thresholds for the
confidence level.

The reminder of this article is organized as follows. The formulation of the proposed method is described in
Section 2. The empirical validation is described in Section 3. Section 4 concludes this article.
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2. Methodology

2.1. Overview
The proposed method infers the trip purpose, or equivalently, the type of subsequent activity. The input data for

the method is data on trips from GPS mobile phones that are identified by the move-or-stay identification,1 and limited
interaction with survey respondents via the mobile phones. The method consists of two processes, namely, estimation
and learning, as shown in Fig. 1a (overview in chronological order) and Fig. 2 (flowchart of the algorithm). In the
estimation process, trip purposes are estimated from GPS data in almost real time (its exact timing is discussed later).
According to the confidence level of the estimation, the probability of initiating the learning process is determined.
It means that the system rarely proceeds to the learning process and just records the estimation result as a survey
result when the confidence level is high enough. In the learning process, survey respondents are requested to respond
to questions on the actual trip purpose, and the estimation model is updated by the answers. If the learning process
was not initiated, the estimation result will be recorded as a survey result. Because of this online learning during the
survey, the estimation model is expected to become accurate, capture the respondents’ characteristics, and reduce the
frequency of questions as the survey progresses. Compared to the conventional probe person survey method (e.g.,
Hato, 2006; Asakura et al., 2014), which automatically records trajectory of a respondent by a mobile GPS device and
requests a respondent to input a trip start/end during trips and all the information about trip contexts at the inputting
process of the travel diary (Fig. 1b), the proposed method is apt to require manual inputs only when the confidence
level of the estimation is low.

Several options for the timing of the trip purpose estimation and questioning can be considered. The information
available to the estimation and the burden on respondents varies depending on the timing. Although any timing is
possible in theory, the following three are considerable in practice:

(a) start of the trip (of which the proposed method estimates the purpose),
(b) end of the trip,
(c) start of the next trip (i.e., end of the activity of which the proposed method estimates the type).

They are illustrated in Fig. 3. Clearly, the latter options can exploit more information. Practical issues regarding this
timing are discussed in Section 2.5.

Fundamental notation is introduced in Section 2.2. The formulation of the proposed method is described in Section
2.3 (estimation process) and Section 2.4 (learning process). Properties of the proposed method and practical matters
are discussed in Section 2.5.

2.2. Definitions
Let C = {c} be a set of trip purposes, K = {k} be a set of observable trip attributes, Xk = {xk} be a set of

possible values of a certain attribute k, and Y = {xk | ∀k ∈ K} be the trip situation. Historical data is denoted by
Rn,t = {(ci, Y i) | ∀i ∈ In,t}, where Rn,t is a set of data for traveler n at time step t, In,t is a set of indices of trips in
Rn,t, ci indicates purpose of ith trip, and Y i indicates situation of ith trip. See Appendix A for explanation of these
definitions with a specified example.

A result of the proposed method for each trip can be labeled as following states.

Correct (C): The system estimated the trip purpose correctly.
Incorrect (I): The system estimated the trip purpose incorrectly.
Question (Q): The system asked a question about the trip purpose, regardless of whether the estimation was correct

or incorrect.
Success (S): The system estimated the trip purpose correctly, and did not ask a question.
Failure (F): The system estimated the trip purpose incorrectly, and did not ask a question.
True (T): The system obtained actual trip purpose as a final result, regardless of whether question was asked or not.

1The move-or-stay identification process automatically identifies points and times of start/end of trips based only on GPS traces (e.g., Asakura
and Hato, 2004; Schüssler and Axhausen, 2009).
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(a) Proposed probe person survey system with interactive online machine learning, when the timing of estimation and questioning is
the start of the next trip

(b) Conventional probe person survey system

Figure 1: Relation between a respondent and a system in the proposed method, and a conventional probe person survey as a reference.

The corresponding composition ratios of the states are denoted as pC, pI, pQ, pS, pF, and pT, respectively. Some of these
states are realized at the same time. Possible combination of states are: correct–success–true, correct–question–true,
incorrect–question–true, and incorrect–failure. By the definitions, pC + pI = 1, pQ + pS + pF = 1, and pT = pQ + pS
hold true. The accuracy of the method is measured by pT, while the burdenless-ness is measured by 1− pQ.

2.3. Estimation process
In general, a trip purpose estimation problem can be described as

max
c
P (c|Y ), (1)

where P (c|Y ) represents the probability of occurrence of trip purpose c when the observed trip situation is Y . Based
on Bayes’ theorem, P (c|Y ) can be expressed as

P (c|Y ) =
P (Y |c)P (c)

P (Y )
, (2)

where P (c) is the probability of occurrence of trip purpose c, and P (Y ) is the probability occurrence of trip situation
Y .
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Figure 2: Process of proposed method.

Figure 3: Timing of questioning and target of the estimation.
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By employing the naïve Bayes assumption (c.f., Rish, 2001), namely, conditional independence among P (xk|c),
Eq. (2) can be reduced into

P (c|Y ) =
1

P (Y )

∏
k∈K

P (xk|c)P (c). (3)

Therefore, the trip purpose estimation problem in this article can be represented as

ĉ = argmax
c∈C

∏
k∈K

P (xk|c)P (c), (4)

where ĉ is an estimated trip purpose.
If a historical data Rn,t is available, P (c) and P (xk|c) for respondent n at time step t can be estimated as

P (c) =

∑
i∈In,t

δ(c, ci)

|In,t|
(5)

P (xk|c) =
∑

i∈In,t
γ(c, xk, ci, Y i)∑

zk∈Xk

∑
i∈In,t

γ(c, zk, ci, Y i)
(6)

with

δ(c, ci) =

{
1, if c = ci

0, otherwise,
(7)

γ(c, xk, ci, Y i) =

{
1, if c = ci and xk ∈ Y i

0, otherwise,
(8)

by simply maximizing their likelihoods. Note that Rn,t is a respondent-specific set, meaning that the probability
functions are calculated for each individual respondent. If Rn,t is empty (e.g., initial stage of the survey), uniform
distributions can be assumed for the probability functions in order to represent no a priori information condition as in
usual Bayesian estimation. The way to collect historical data Rn,t during a survey is presented in the next section.

2.4. Learning process
Survey respondents are occasionally asked their actual trip purpose based on the confidence level of the estimation

result; and then the historical data Rn,t is updated by the answer (i.e., the answer is added to the historical data).
Specifically, a trip purpose question randomly appears as an estimation failure rate of each estimation is expected to
be (approximately) identical to an acceptable failure rate, paf, which is pre-given by the analysts in the planning phase
of the survey. The confidence level is P (ĉ|Y ) and determined by

P (ĉ|Y ) =

∏
k∈K P (xk|ĉ)P (ĉ)∑

c∈C
∏

k∈K P (xk|c)P (c)
. (9)

The probability of a question appearing, paq, is defined as

paq = max

{
0, 1− paf

1− P (ĉ|Y )

}
. (10)

When the question does not appear or is not answered by a respondent, the estimation result described in Eq. (4)
is recorded, and the probability functions are not updated. When respondents answer the question, the probability
functions are updated using the answer and Eqs. (5) and (6).
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2.5. Discussion
By applying the proposed method to the same respondent for a long-term period, the proposed method is expected

to learn the activity pattern of the respondent. At the initial stage of the survey, the survey system will ask questions
almost every time (i.e., high pQ). As the survey progresses, the system will then learn the characteristics of trips
(i.e., estimate P (xk|c) accurately by re-calculating Eqs. (5) and (6) with updated Rn,t) based on interaction with the
respondent, and infer the purposes automatically (i.e., low pQ and high pS). The learning speed would differ depending
on the personal activity pattern—the higher the regularity of trips is (e.g., commuting), the faster the learning speed
is. Meanwhile, the error of the system is controlled by the acceptable failure rate paf, so that the quality of the results
is guaranteed. In cases where irregular trips or sudden behavioral changes are observed, the system will start asking
questions again and eventually adapt to the new patterns.

In terms of the survey accuracy, high true rate pT is preferable. On the other hand, in terms of the survey burden,
low question rate pQ is preferable. Meanwhile, failure rate pF = 1 − pT is expected to be approximately identical to
the acceptable failure rate paf, which is pre-given by the survey designer. In addition, the higher paf is given, the lower
pQ is expected according to Eq. (10). Consequently, we can expect that there is a trade-off relation between accuracy
(high pT) and burdenless-ness (low pQ) of the survey, and this can be controlled by the value of the acceptable failure
rate paf.

Several timings for questioning can be considered, as mentioned in Section 2.1. Each of them has different practical
advantages and disadvantages. In terms of the observable information, it can be expected that the timing (c) will be
the most accurate, followed by the timing (b). This is because they can utilize information on the destination of trips
and/or duration of activity from which purpose/type is estimated. Regarding the burden on respondents, the timings
(a) and (c) are possibly not preferable for respondents who are driving, while (b) may not be suitable for respondents
who are performing busy activities. If a respondent missed a question, the estimated purpose can be substituted as the
survey result without waiting for an answer. The accuracy of the method might be lowered from the expected value in
this case.

These properties of the proposed method, namely, learning speed, effect of acceptable failure rate, and timing for
questioning, are empirically investigated in Section 3.

The proposed method uses a naïve Bayes classifier (Rish, 2001), which is not always accurate compared to other
advanced methods, such as discrete choice models (Oliveira et al., 2014), Bayesian networks, and neural networks
(Feng and Timmermans, 2016). However, naïve Bayes classifiers require smaller amounts of sample data, compared
with such advanced methods. This feature is essentially beneficial for the proposed approach; because the expected
size of sample data for the proposed approach is limited. For example, the size of sample data for a usual respondent
(who makes three trips per day on average) is expected to be only 90 trips per month at the maximum. In fact, the
sample size must be substantially smaller than 90 in this case, since automatically inferred purposes are not considered
as samples. Such small sample sizes would not be sufficient to train or calibrate the aforementioned advanced methods.
Besides, the naïve Bayes classifier is computationally efficient. This is also beneficial to the proposed approach, which
trains and updates its classifier iteratively as the survey progresses. Therefore, its implementation on mobile phones
is remarkably easy and battery-friendly.

The proposed method can be considered as a generalization of certain existing activity-travel survey methods in
the following sense. In the case of paf = 0, the proposed method is identical to conventional travel-diary-based surveys
assisted by GPS, as respondents manually input all the trip purposes. In the case of paf = 1 and when intentionally
calibrated initial distributions for P (c) and P (xk|c) are given, the proposed method can be considered as a trip purpose
inference method with a predetermined inference model, as all the trip purposes are estimated without manual inputs
or online learning.

3. Empirical Analysis

The proposed method is examined by simulating it on actual behavioral data obtained from a past probe person
survey.
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(a) trip purposes over the days (b) total number of trips of each respondent, characterized by average number
of commuting trips per week

Figure 4: Basic properties of the survey data.

3.1. Validation method
3.1.1. Data

The data for validation is collected from a probe person survey using web-based diary and mobile communication
systems, conducted by Ministry of Land, Infrastructure, Transport and Tourism and Matsuyama city. The data include
trip purpose, origin/destination places, and beginning/end of trips, manually inputted by the respondents. The diary
data were collected in Matsuyama city in Japan from December 17 to December 30, 2007. The respondents consist
of usual workers and their families. The number of respondents is 92. The respondents made 4120 trips during the
period. This corresponds to 44.8 trips/person and 3.2 trips/person/day. The basic properties of the data, namely, the
trip purposes over the days, and the total number of trips of each respondent, are shown in Fig. 4. The days with
pink-colored background in Fig. 4a, namely, 12/22, 12/23, 12/24, 12/29, and 12/30, are weekends and holidays.

The trip attributes in the data are employed for the trip purpose estimation and learning processes of the proposed
method. In the process described in Section 2.4, when a question arises, the trip purpose data are regarded as the
answer to the arisen question, and are used for the learning process. When a question does not arise, the trip purpose
data are only used for validating whether an estimation result is correct or not. Since the method asks the questions
randomly, Monte Carlo simulation is conducted in this validation.

3.1.2. Specification of the model and scenario parameters
In this validation, the purpose of each trip is defined as context c. They are defined as

C = {commuting, returning home, business, shopping, private, others}. (11)

The business purposes represent the trips where travelers travel between workplaces and other places such as their
clients’ offices.

Trip attributes available to the proposed method vary depending on the timing of the estimation as discussed in
Section 2.5. The three timings of estimation and questioning discussed in Section 2.1 are considered, namely (a) start
of the trip (of which the purpose is estimated), (b) end of the trip, and (c) start of the next trip. The trip attributes set
corresponding to the timing are defined as

Ka = {day of week, time of day at departure, location of origin}, (12)
Kb = {day of week, time of day at arrival, location of destination}, (13)
Kc = {day of week, time of day at arrival, location of destination, duration of activity}, (14)

respectively. Note that departure and arrival information should not be simultaneously included into an attributes
set, as they are often strongly correlated and thus violate the underlying assumption of the naïve Bayes method.
Each variable is discretized to adapt to the employed naïve Bayes method. Day of week is defined as Xday of week =
{weekday,weekend-or-holiday}. Places X location of origin and X location of destination are defined as a square-shaped mesh
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discretized with 100 m times 100 m rectangle. Time of day X time of day at departure and X time of day at arrival is discretized
into three-hour-length bins, and that of Xduration of activity is one hour. Durations larger than 12 hours are classified in
the bin of 12 hours.

The other important parameter of the proposed method is the acceptable failure rate, paf. For this, the following
four parameter values are considered: 1%, 5%, 10%, and 15%.

In the following analyses, the scenario with timing (b) and paf = 5% is considered as a reference scenario because
of its moderateness.

3.2. Results
The overall results and comparison among scenarios (i.e., timing of questioning and acceptable failure rate) are

presented in Section 3.2.1. Detailed analyses on the reference scenario are presented in Sections 3.2.2 and 3.2.3.
Finally, their implications are discussed in Section 3.3.

3.2.1. Overall performance, acceptable failure rate, and timing of questioning
The accuracy of the proposed method with question timing (b) is shown in Fig. 5 as a time-series. The horizontal

axis represents the number of days from the survey beginning, while the vertical axis represents the composition rate of
questions, success, and failure rates as defined in Section 2.5, averaged over all the respondents. The percentile values
indicate proportions in Monte Carlo simulation replications. The days with pink-colored background are weekends
and holidays.

In the reference scenario with paf = 5% shown in Fig. 5b, the question arose in more than 90% of trips in the
first day of the survey. As the survey progressed in the weekdays, the question rate pQ decreased monotonically, the
success rate pS increased monotonically, and the failure rate pF remained almost constant. The performance of the last
weekday (i.e., December 28th) was pQ = 63%, pS = 34%, and pF = 3%. In the weekends, similar tendencies were
observed, but the question rate was higher than that in the weekdays. On the other hand, the failure rate remained
almost constant at 6% throughout the survey period. Moreover, the results of different simulation replications show a
narrow distribution (i.e., difference between the 5%tile value and the 95%tile value is small), implying that the method
is fairly stable.

In the cases of different paf values, similar tendencies were observed as well (Fig. 5a, 5c, 5d). On the other hand,
the success rate pS showed a tendency to increase as paf increases, and the trade-off relation between pT and 1 − pQ
discussed in Section 2.5 was clearly observed. However, the values of the average failure rates were not identical to
the pre-given paf values. This might be due to the conditional independence assumption in the naïve Bayes model, not
being exactly satisfied.

The average performance, namely, average true and question rates of every scenario, averaged over the entire
survey period, is shown in Tabs. 1 and 2. From Tab. 2, it was confirmed that pT is roughly equal to 1− paf in most of
the scenarios. For the scenarios with the same timing of questioning, the aforementioned trade-off relation between
pT and 1− pQ can be found again; namely, pQ decreases as paf (' 1− pT) increases in Tab. 2. Regarding the timing
of questioning, it was suggested that timing (c) is preferable in terms of accuracy; while timing (b) is less preferable
but better than (a).

3.2.2. Trip purpose
Average performance regarding actual trip purposes in the reference scenario (i.e., paf = 5% and timing (b)) is

shown in Tab. 3. The commuting trips had the lowest pQ among the purposes, because they usually have strong
regularity in time and destinations. The pQ in shopping, private, and others were higher than those of the other trip
purposes. This is because activities in these trip purposes did not have strong regularity. Regarding pT, all of the
purposes showed similar values, close to the pre-given values for paf as expected. However, pT in the shopping, private,
and others were slightly lower than paf. This might be because these three trips were not easily distinguishable from
one another due to the lack of regularity.

3.2.3. Individual characteristics
The capability of the proposed method to capture traveler heterogeneity is investigated here. The average

performance for each respondent in the reference scenario is shown in Fig. 6 where each cross marker indicates
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(a) acceptable failure rate paf = 1% (b) paf = 5%

(c) paf = 10% (d) paf = 15%

Figure 5: Estimation results in time-series with timing (b).

the average performance of a respondent. It can be observed that while pQ varies among respondents, pT is almost the
same for all respondents. This means that, although the reduction of survey burden varies among respondents due to
traveler heterogeneity, the method eventually obtained accurate results by questioning.

A more dynamical aspect of the proposed method, namely, the learning speed of the method for each respondent
is shown in Fig. 7. The x–y plot shows that, if the learning process (i.e., questioning and learning) of the proposed
method were terminated on the xth day, y×100%of the whole trips of each respondent can be successfully estimated.2
The percentile indicates the composition of respondents. For example, if the learning process were terminated on the

2This value is estimated for each respondent in every day in every Monte Carlo simulation. Each value is derived from 100 trips obtained by
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Table 1: Average true rate pT in each scenario.

Timing
Acceptable failure rate paf

1% 5% 10% 15%
(a) 98.8% 94.4% 89.3% 84.5%
(b) 99.2% 96.3% 92.9% 89.2%
(c) 99.0% 95.6% 91.7% 87.9%

Table 2: Average question rate pQ in each scenario.

Timing
Acceptable failure rate paf

1% 5% 10% 15%
(a) 95.3% 81.8% 69.2% 58.9%
(b) 94.5% 79.3% 66.3% 56.3%
(c) 90.2% 72.2% 59.2% 49.7%

Table 3: Average performance regarding trip purposes in the reference scenario.

Trip purpose True rate pT Question rate pQ
Commuting 98.2% 68.8%
Returning home 98.1% 75.6%
Business 97.4% 77.2%
Shopping 94.2% 88.3%
Private 92.1% 90.0%
Other 93.4% 87.4%

Figure 6: Average performance regarding each respondent in the reference scenario.
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Figure 7: Learning speed over respondents in the reference scenario.

7th day, purposes of more than 82% of trips of half (i.e., 50%tile) of respondents could be successfully estimated.
Similarly, those of more than 64% of trips of 95% of respondents and those of more than 98% of trips of 5% of
respondents could be successfully estimated in this case.

According to Fig. 7, the accuracy of the estimation model increased monotonically as the survey progresses,
regardless of respondents. Meanwhile, the learning states of the proposed method significantly varied among
respondents, especially at the initial stage of the survey. This is because of their heterogeneity in travel regularity.
However, the difference also decreased almost monotonically as the survey progresses. Note that the respondents with
fast learning speed in Fig. 7 correspond to those with low pQ in Fig. 6.

3.3. Discussion
It was confirmed that the performance of the proposed method in the weekdays improved monotonically as the

survey progresses, regardless of respondents. On the other hand, the failure rate also remained almost constant
regardless of respondents. Moreover, while the values of the question rate pQ varied among trip purposes and
respondents depending on their regularity, the true rate pT was almost the same among them. These results suggest
that the method properly captured heterogeneity among respondents, by dynamically updating the inference model for
each respondent. This feature might be enabled by the naïve Bayes classifier, which only requires a small sample size.
However, it was also confirmed that the simplification in the naïve Bayes classifier introduced slight systematic errors,
for instance on failure rates in private and shopping trips.

Increasing the acceptable failure rate greatly reduced survey burden, at the cost of data quality. Therefore, the
optimal value of the acceptable failure rate depends on the requirements of a survey, and should be selected carefully
by the survey planner.

Regarding the timing of questioning, timing (c) was revealed to be the most-efficient in terms of the estimation
performance, followed by timing (b). Timing (a) was relatively inefficient. These results are reasonable as discussed
in Section 2.5. Therefore, in a practical survey, it would be considerable to set the timing of questioning to either (b)
or (c), depending on respondents’ situation (e.g., driving or not, activity busyness).

4. Conclusions

This article has proposed a framework for an interactive activity-travel survey method for semi-automated trip
purpose inference. The proposed method has been designed to dynamically update the inference model by asking a
respondent, when the confidence level of the estimation results are not high enough. As a result, the proposed method
would be able to accurately infer the trip purposes by capturing traveler heterogeneity, while being independent of
preceding data collection and calibration.

randomly sampling from trips made by each respondents.
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The proposed method was examined by simulation based on actual behavioral data collected from a conventional
probe person survey. The results suggest that the frequency of inputs by survey respondents can be significantly
reduced, while maintaining high accuracy of the obtained data as expected. For example, the method successfully
estimated certain types of trips (e.g., commuting) and behaviors of certain respondents (e.g., those whose activity-travel
behavior is recurrent) because of the learning process, and reduced survey burden on them. At the same time, although
the method could not always precisely estimate some other kinds of trips, the method eventually obtained accurate
results because of the questioning. Therefore, the proposedmethod could be useful to reduce the burden on respondents
in a long-term survey, while keeping the data quality high and capturing traveler heterogeneity.

Several future research directions can be proposed. First, identifying similar types of travelers and applying the
same activity inference model to them would be valuable in order to employ advanced learning methods, which are
more accurate and require larger sample sizes (c.f., Section 2.5). Second, the application of the proposed approach to
other non-observable trip attitudes, such as travel companions and fares, is considerable. Third, field implementation
of the proposed method and a large-scale survey are now being conducted by the authors to investigate detailed
characteristics of the method.

Acknowledgements

The authors would like to thank Prof. Eiji Hato (The University of Tokyo), Mr. Tomonori Ishii (Matsuyama City),
and Mr. Michihiro Mori (Fukken Co., Ltd.) for their cooperation in using the Matsuyama data. Part of this work
was financially supported by the Japan Society for the Promotion of Science (KAKENHI Grant-in-Aid for Scientific
Research (S) 26220906).

Appendix A: Example of trip situation

For easier understanding, following explain the definition in Section 2.2 using a specified example.
Let trip purposes C be {c1, c2} where c1 and c2 represent returning-home and commuting, respectively. Let trip

attributes K be {k1, k2, k3} where k1, k2, and k3 represent weekday-or-not, departure time, and location of origin,
respectively. Regarding Xk, let values for weekday-or-not X1 be {x11, x12} where x11 and x12 indicate weekday and
holiday, respectively. Also, let values for departure time X2 be {x21, x22} where x21 and x22 indicate a.m. and p.m.,
respectively. Finally, let values for the location of the origin X3 be {x31, x32, x33} where x31, x32 and x33 indicate home,
office, and others, respectively.

An example of ith trip can be one with purpose ci = c2 under situation Y i = {x11, x22, x32}, which can be
translated as “a returning-home trip in weekday afternoon, departed from office”. The proposed method first observes
Y i = {x11, x22, x32} automatically, and then tries to infer the value of ci in the estimation process. If the method asks a
question to the survey respondent and it is answered properly, ci = c2 will be observed andRn,t+1 will be constructed
by adding element (c2, {x11, x22, x32}) to Rn,t in the learning process.
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