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Abstract 
Flow breakdown is defined as a transition from a free-flow state to a congested state of a traffic state 
at a certain location. It occurs when the arrival flow to the location exceeds its capacity. This article 
contains discussions on characteristics of flow breakdown, such as main causes, stochastic nature, and 
long-term variations. We also discuss peculiar traffic flow phenomena, associated with the flow 
breakdown: “stop-and-go traffic” and “capacity drop."  Finally, future research directions regarding 
the flow breakdown, which is based on emerging data and vehicle technologies are discussed. 
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Fig.1 Breakdown in time–space and flow–density diagrams 
 
1. Introduction 
 Flow breakdown is defined as a spontaneous transition from a free-flow state to a congested 
state of a traffic state at a certain location. “Spontaneous” in this definition means that the transition 
is not caused by a queue extension from the downstream sections. This occurs when the arrival flow 
to the location exceeds the capacity of the location. Therefore, a breakdown happens at a bottleneck 
(see the article “Bottleneck”). In the Highway Capacity Manual (HCM) (Transportation Research Board, 
2016), breakdown is explained as “the transition from uncongested to congested conditions. The 
formation of queues upstream of the bottleneck and the reduced prevailing speeds make the 
breakdown evident.” and “breakdown occurs when the ratio of existing demand to actual capacity … 
exceeds 1.00 .” 
 The definitions of free-flowing and congested states of traffic are as follows. Traffic is in a free-
flow state when most of the vehicles are traveling at their own desired travel speed. On the other 
hand, traffic is in congested state when most of the vehicles are forced to travel at speeds lower than 
their desired travel speed, because of too small spacing (i.e., the distance headway is too small). 
Macroscopic traffic states can be divided into two qualitative categories: free-flowing and congested 
states. In general, traffic with a small density is free-flowing and traffic with a large density is 
congested. The threshold density between the free-flowing and congested states is called critical 
density. 
 Breakdown is a spatial-temporal phenomenon. Fig. 1 illustrates breakdown at a bottleneck, 
based on kinematic wave theory (for a basic interpretation of this figure, see the article “Bottleneck”). 
In the flow–density (or fundamental) diagram (Fig. 1a), breakdown can be represented as the 
transition from the free-flowing states (F1 and F2) to the congested state (C). However, this 
representation is not complete, because it is not clear where and when the transition happens. In the 
time–space diagram (Fig. 1b), breakdown can be represented as the onset of congestion at the 
bottleneck location. If a traffic detector was placed at the direct upstream position of the bottleneck,  
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Fig.2 Schematic representation of relationship between three factors and flow breakdown 

 

 
Fig.3 Trajectories of traffic flow. Solid lines indicate real vehicle trajectories, dotted lines indicate the trajectories 
of vehicles driving at their desired speed, open circles indicate freely driving vehicles in the study section, and 
solid circles indicate following vehicles. 

 
it would observe the aforementioned transition of traffic state from free-flowing to congested. Note 
that this breakdown is not caused by a queue extension from the downstream sections; the 
downstream section is always in the free-flowing state. On a microscopic scale (Fig. 1c), flow 
breakdown can be roughly understood as the sudden speed reduction of a particular vehicle for which 
its following vehicles must also reduce their speed,  although its leading vehicle is free-flowing. This 
speed reduction grows into a macroscopic waiting queue. 
 
2. Characteristics of flow breakdown 
 Traffic congestion occurs when traffic demand exceeds traffic capacity. This seems to be an 
unquestionable fact and, pragmatically, it is true. However, observations of real-world traffic reveal 
that traffic flow is not as simple, due to its stochastic nature. Traffic demand varies stochastically, and 
even traffic capacity does. That is why flow breakdown does not always happen at the same traffic 
demand level even at a same bottleneck point. 
 
2.1 Necessary conditions for flow breakdown 
 According to Treiber and Kesting (2013), traffic flow breakdowns are caused by “the 
simultaneous action of three factors: high traffic load, a bottleneck, and disturbances of traffic flow 
caused by individual drivers.” Fig. 2 illustrates this interrelationship. When traffic flow with a high 
density encounters a bottleneck, some speed disturbance may occur for a variety of reasons. If the 
high traffic volume still continuously flows into the bottleneck, the disturbance remains there and is 
amplified. Then, a severe deceleration wave is generated and propagates upstream. Finally, traffic 
flow breaks down and the discharge flow rate from the bottleneck decreases (see Section 3.1 for 
details). 
 
 

High traffic load Bottleneck Disturbance

Flow Breakdown
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(a) Example of two-lane section                               (b) Example of three-lane section                          

Fig. 4 Observation of lane-flow distribution on freeways (Data from Shiomi et al., 2019) 
 
2.1.1 High traffic load 
 Vehicles arrive at a bottleneck section randomly, not uniformly. This randomness is caused by 
the heterogeneity of time headways and desired speeds. A vehicle with a higher desired speed catches 
up with a slower vehicle and is forced to slow down and follow it. The number of following vehicles 
increases behind the slow vehicle, and then a platoon in which traffic load is locally and temporarily 
high is generated (Shiomi et al., 2011), as shown in Fig. 3. In a large platoon, speed disturbances at a 
bottleneck are likely to occur, propagate, and be amplified. This causes traffic flow breakdown. 
 On a multilane highway, traffic load is unevenly distributed lane by lane (Shiomi et al., 2015). 
When traffic density approaches critical density, more traffic is loaded onto the inner lane than the 
outer and center lanes, as shown in Fig. 4. Inequality in lane use results, at first, in a breakdown of 
traffic flow in the inner lane. Then, some of the overflow quickly moves to the less congested lane, 
thereby causing all the lanes to become congested almost simultaneously (Xing et al., 2014). 
 
2.1.2 Bottlenecks and local disturbances 
 Local disturbances are likely to occur at a bottleneck or, conversely, we can say a bottleneck 
is the place where local disturbances frequently occur. On freeways, the cause of the disturbance at a 
bottleneck depends on the type of bottleneck. At a lane drop point, work zone, or accident site, where 
traffic capacity is apparently lower than the section behind the bottleneck, drivers are forced to 
change lanes and cut in at the bottleneck, which generate speed disturbances. At diverging and 
weaving sections, lane changes are necessary to get to the destination, which causes speed 
disturbances as well. At sags, tunnels, and even “rubbernecking” sites, drivers may unconsciously drop 
their driving speed, in turn stimulating any surrounding drivers to change lanes. Both speed drops and 
lane changes may cause considerable speed disturbance (Patire and Cassidy, 2011). For more details 
on a bottleneck refer to the article “Bottleneck.” 
 
2.2 Stochastic nature of flow breakdown 
 The breakdown flow rate, which is the flow rate at which traffic flow falls into breakdown and 
a congestion queue appears, varies even under the same road and environmental conditions, because 
each necessary condition mentioned above is not deterministic, but stochastic, and vehicle behaviors  



 5 

 
Fig. 5 Input and output capacity distribution functions for simulation model (Adapted  from Geistefeldt and 
Brilon, 2009) 
 
including freely driving, car-following, and lane changing are heterogenous. Thus, flow breakdowns 
are probabilistic events, and the concept of stochastic capacity has been proposed (Brilon et al., 2005). 
In this concept of stochastic capacity, the capacity distribution function 𝐹"(𝑞)  is defined and 
represented as follows: 
 𝐹"(𝑞) = 𝑝(𝑐 ≤ 𝑞), (1) 
where 𝑝(⋅) is the probability, 𝑐 is capacity, and 𝑞 is flow rate. In accordance with the definition of 
“deterministic” traffic capacity, that every flow rate greater than the capacity causes a traffic 
breakdown, the capacity distribution function 𝐹"(𝑞) represents the probability of a traffic breakdown 
dependent on the flow rate 𝑞. 
 According the HCM (Transportation Research Boards, 2016), the breakdown probability is 
estimated by allocating the observed volumes into groups, determining the ratio of the number of 
breakdown intervals and the total number of intervals for each group, and fitting that to the Weibull 
distribution. Herein, the fifteenth-percentile value of the breakdown probability is recommended to 
be the traffic capacity.   
 However, observed traffic capacity is considered as a type of censored observation. That is, 
when a traffic flow rate is observed without breakdown, it implies that the traffic capacity at that time 
is greater than the observed flow rate. This “direct” estimation is sometimes criticized because it 
ignores bias. To remove bias, a method to estimate breakdown probability has been developed, based 
on models for lifetime data analysis (Brilon et al., 2005). A non-parametric method to estimate the 
distribution function of lifetime variables is the so-called “Product Limit Method” (PLM), in which the 
capacity distribution function 𝐹"(𝑞) is written as Eq. (2). 

𝐹"(𝑞) = 1 − 𝑆(𝑞) = 1 − /
𝑘1 − 𝑑1
𝑘1

	
1:5675

, 𝑖 ∈ {𝐵}, (2) 

where 𝑞 is flow rate [veh/h], 𝑞1  is flow rate in interval 𝑖 (veh/h), 𝑘1  is the number of the intervals with 
a flow rate of 𝑞 ≥ 𝑞1 , 𝑑1  is the number of breakdowns at a flow rate of 𝑞1 , and {𝐵}  is a set of 
breakdown intervals. For a parametric estimation, the distribution parameters are estimated by 
applying the Maximum Likelihood Estimation (MLE). Eq. (3) defines the likelihood function 𝐿: 

𝐿 =/𝑓"(𝑞1|𝛃)B6 ∙ [1 − 𝐹"(𝑞1|𝛃)]FGB6,
H

1IF

 
(3) 

where 𝛃 is a parameter vector of the distribution function of the capacity; 𝑛 is the number of intervals; 
and 𝛿1 = 1, if interval 𝑖 contains an uncensored value; and, 𝛿1 = 0, if interval 𝑖 contains a censored 
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Fig. 8. Input and output capacity distribution functions for simulation models I and II 

The reason for the inferior performance of the direct probability estimation me-

thod was evidenced by a deeper analysis of the simulated data. In case of conges-

tion, the simulation model delivers both traffic demand and capacity values. In 

breakdown intervals, the traffic demand exceeds the capacity, so that the traffic 

volume (= passing traffic) is limited by the capacity. In real traffic flow, this 

means that the queue starts to build up, leading to a speed drop in the next interval. 

If the simulated demand was regarded as the breakdown volume instead of the ca-

pacity, the direct breakdown probability estimation method delivered a capacity 

distribution function that almost exactly matched the input distribution. However, 

the total demand volume in the breakdown interval can not be observed in the 

field, because volumes greater than the capacity can not be measured. Hence, the 

inconsistency of the direct breakdown probability estimation results from the fact 

that in equation (3), the number of traffic breakdowns Ni represents capacity ob-

servations, whereas the number of all intervals ni mainly represents demand ob-
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Fig. 6 Long-term variation of fifth-percentile value of breakdown probability (Data from Shiomi et al., 2019) 

 
 value. Comparisons between the direct estimation, PLM, and MLE are illustrated in Fig. 5 (Geistefeldt 
and Brilon, 2009), which shows that the PLM and MLE gives more robust results than direct estimation. 
 
2.3 Long-term variations of breakdown flow rate 
 Recently, it was reported that the breakdown flow rate has been gradually decreasing, over 
time, in some countries. Fig. 6 shows the long-term variation of the fifth-percentile value of 
breakdown probability, from Jan. 2008 to Dec. 2016, at nine typical bottlenecks on freeways in Japan 
(Shiomi et al., 2019). Fig. 6 indicates that the fifth-percentile traffic volume of breakdown probability 
decreased over time at eight of the nine sites. On average, the fifth percentile of breakdown 
probability decreased by 10.8 veh/15 min each year (i.e., 86.4 veh/15 min over eight years), which is 
equivalent to 91.7% of the initial value. The environment at these bottlenecks has remained 
unchanged in the eight years, so the decreasing trend may be attributed to the characteristics of 
vehicles, drivers, or both. This suggests that local disturbances are more likely to occur today than in 
the past, because the characteristics of traffic flow have changed.  
 
3. Associated phenomena and their possible explanations 
 Peculiar traffic flow phenomena, associated with a traffic breakdown, are usually observed 
near an active bottleneck, which has negative effects on traffic efficiency and safety. Here, we will 
discuss two peculiar phenomena: “capacity drop” and “stop-and-go traffic,” and their possible 
explanations. 
 
3.1 Capacity drop 
 Once traffic breaks down at a bottleneck, one would logically expect that the queue discharge 
flow rate from the bottleneck is equal to its traffic capacity. However, in real traffic, the observed 
queue discharge flow rate decreases by an order of 10%. This phenomenon is called “capacity drop.” 
This phenomenon has been recognized for many years (e.g., Lincoln and Holland Tunnels, Edie and 
Foote, 1958), and the shape of associated flow-density relation typically resembles a mirror image of 
the lambda character (λ), which exhibits a discontinuity between the free-flow and congested states 
(see, for example, Koshi et al., 1983). The decrease in the queue discharge flow rate prolongs the 
congestion period, and can incur a profound additional delay of drivers, which has motivated 
development of several traffic control strategies, such as ramp-metering and variable speed limits. 
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Fig.7 Lane-changing particles (red dots) and voids (white regions) in traffic stream (Adapted from Laval and 
Daganzo, 2006) 
 

 
Fig. 8 Illustration of the formation of the capacity drop 

 
 The hypotheses for the occurrence of the capacity drop phenomenon are mainly divided into 
two categories, depending on assumed driving behaviors, i.e., a (longitudinal) sluggish car-following 
behavior, and a (lateral) disruptive lane-changing behavior. Let us look at the latter category first. In 
Laval and Daganzo (2006), it is postulated that lane-changing vehicles create voids in (congested) 
traffic streams, and that these voids reduce flow. They describe this mechanism with a hybrid model 
in which lane-changing particles, endowed with a bounded acceleration (BA) capability, are 
endogenously generated and incorporated into the kinematic wave model as moving bottlenecks. 
Additionally, they found that the model can reproduce the capacity drop phenomenon (see Fig. 7), in 
agreement with empirical observations at a merge bottleneck (Cassidy and Rudjanakanoknad, 2005). 
However, in Cassidy and Rudjanakanoknad (2005), it was also argued that “lane changing alone might 
not explain the capacity drop.” In fact, a significant capacity drop has been observed even in a single-
lane freeway bottleneck (Okamura et al., 2000). 
 Regarding car-following behavior, it is commonly conjectured that a reduction in the queue 
discharge flow rate is caused by a low acceleration and/or delayed response of vehicles that leave 
from queues or traffic disturbances (e.g., oscillations), upstream of bottlenecks (Hall and Agyemang-
Duah, 1991; Koshi et al., 1992). One modelling approach assumes state-dependent changes due to 
different car-following styles. For instance, Zhang and Kim (2005) describes less sensitive responses to 
the leading vehicle in car-following models, by a state-dependent time-gap parameter, that depend 
on the distance-gap (and speed). Chen et al. (2014) also consider some drivers, who become less 
aggressive and adopt longer response times and minimum spacings when passing traffic disturbances, 
in their multi-class traffic flow model. However, none of these models treat the capacity drop 
phenomenon endogenously. Furthermore, because their mechanisms are purely based on (intra- and 
inter-) drivers’ heterogeneities, insights to the relation between the capacity drop and bottlenecks —
spatial heterogeneities— are lacking. 
 

v ! 0 more and more lane changes take place far upstream from the bottleneck where lane-speeds
are similar. We recognize that these results could vary slightly with a more realistic lane-choice
model, but they clearly illustrate the deleterious effect of lane changes near a bottleneck.3

3.3. Discussion

A four-parameter multilane hybrid model for traffic flow that recognizes the bounded acceler-
ations of lane-changing vehicles has been introduced. The model appears to explain the reduction
in flow observed after the onset of congestion at freeway lane-drops and the relationship between
the speed of moving bottlenecks and their capacities. The ultimate cause for both phenomena ap-
pears to be the limited ability of lane changers to accelerate. (Additional simulations show that
both effects disappear when the acceleration parameter of the model is increased.) The more de-
tailed evidence also suggests that lane changes affect bottleneck behavior in ways that can be
controlled to improve traffic flow. For example, since the spatial distribution of lane changes
and the difference in lane speeds are found to be important determinants of bottleneck capacity,
traffic managers may be able to increase capacity by forbidding lane changes and/or posting speed
advisories at key locations upstream of bottlenecks; e.g., as in Daganzo et al. (2002).

We obtained virtually identical results after replacing the KW module with the cellular auto-
mata (CA) model in Daganzo (2004), using the same three macroscopic parameters. (This refer-
ence shows that the vehicle trajectories produced by the CA model in that reference and the KW

3 A more realistic lane-choice model would recognize drivers! reluctance to change lanes with very high speed
differences.

Fig. 5. k-maps for a moving obstruction traveling at (a) v = 1 kph and (b) v = 50 kph.

260 J.A. Laval, C.F. Daganzo / Transportation Research Part B 40 (2006) 251–264
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Fig. 9 Comparison between empirical and model’s speed profiles in capacity drop stationary state near 
bottleneck (Image adapted from Jin, 2018) 
 
 Another modelling approach, which can endogenously describe the capacity drop 
phenomenon, is founded on two main assumptions: spatial heterogeneities and the BA of vehicles (Jin, 
2017, 2018). The spatial heterogeneity is expressed by a location-dependent fundamental diagram. 
For example, the jam density diminishes within lane-drop bottlenecks. Additionally, the time gap may 
increase within sag (and tunnel) bottlenecks, because drivers cannot fully compensate for gradient 
changes, but try to keep their spacing. Such a location-dependent fundamental diagram describes not 
only the local reduction in the (static) capacity (i.e., bottleneck effects), but also the delay in the speed 
adaption to the leading vehicle in the car-following situation (Wada et al., 2020). As illustrated in a 
lead vehicle problem by Fig. 8(b), the BA version of Newell (2002)’s car-following model (Laval and 
Leclercq, 2008), with a specific location-dependent fundamental diagram, leads to a capacity drop. 
Specifically, if the demand exceeds the capacity, (i) the speed of a vehicle arriving at the end of the 
bottleneck (at x = L) is less than that of the leading vehicle, due to delayed speed adaption; and, (ii) 
unlike in Fig. 8(a), the vehicle cannot recover to the free-flow speed instantaneously, owing to the BA 
constraint, which results in an increase in the headway of the next vehicle at x = L (i.e., the queue 
discharge flow rate decreases). This vicious cycle (steps (i) and (ii)) continues to reach the capacity 
drop stationary state. Furthermore, this modelling approach can explain a very low acceleration rate, 
when passing through the bottleneck, during the capacity drop stationary state (Persaud and Hurdle, 
1988; Koshi et al., 1992). Fig. 9 demonstrates that the speed profile in the capacity drop stationary 
state, by the (calibrated) model (Jin, 2018; Wada et al., 2020), very well matches that observed in the 
Kobotoke tunnel in Japan (Koshi et al., 1992). 
 
3.2 Stop-and-go traffic 
 Once traffic flow breaks down, deceleration waves are formed around an active bottleneck 
and propagate regularly in the upstream direction, with an almost constant speed (on the order of 20 
km/h). Vehicles are forced to decelerate and accelerate when passing through these traffic 
disturbances. This phenomenon is called “stop- and-go traffic” or “traffic oscillation,” and was first 
found in observations at the Lincoln tunnel (Edie and Foote, 1958). It is also known that the oscillations 
are rather small in amplitude immediately upstream of the bottleneck, but they are amplified as they 
propagate against the traffic stream; and, the oscillations across lanes are synchronized. Furthermore, 
Tian et al. (2016) recently found from empirical and experimental data that the standard deviation of 
the vehicles’ speeds increases in a concave manner, during the oscillations (see Fig. 10).While the 
trigger of stop-and-go traffic can be caused by any traffic disturbance, such as lane changes and/or 
slow vehicles, there is still active discussion regarding the mechanism of the propagation and 
amplification of these disturbances. 

ー Bounded acceleration

ー Congested tra!c (Car-following)
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Fig. 10 The standard deviation of the speed of each vehicle (Adapted from Tian et al., 2016) 

 

 
Fig. 11 Vehicle trajectories of NGSIM data and simulation results (Adapted from Laval et al., 2014) 

 
 Conventionally, stop-and-go traffic has been studied as a phase transition or pattern 
formation, due to the system instability (i.e., the string or flow instability) of car-following models, 
that are described as a system of (ordinary or delayed) differential equations (Kometani and Sasaki, 
1958; Bando et al., 1995; Treiber and Kesting, 2013). This line of research indicates that, regardless of 
the details of the models, some common driving behaviors such as finite acceleration, deceleration, 
and reaction times lead to stop-and-go traffic (Treiber and Kesting, 2013). However, an empirical 
validation of these models is lacking (Laval and Leclercq, 2010). Furthermore, the growth pattern of 
oscillations, in the typical (homogeneous and deterministic) car-following models, is qualitatively 
different from the findings above (i.e., a convex growth pattern in the initial stage) (Tian et al., 2016). 
 A more behavioral modelling approach is based on extensive empirical analyses of vehicle 
trajectory data that is available more recently (e.g., NGSIM data, U.S. Department of Transportation 
Federal Highway Administration, 2016). Specifically, it has been proposed that oscillations may be 
caused by changes in the car-following behaviors of drivers when facing traffic waves. Yeo and 
Skabardonis (2009) proposed an asymmetric traffic theory in which acceleration and deceleration 
behaviors have different characteristics due to the anticipation and overreaction of drivers. In contrast 
to the introduction of the intra-driver heterogeneity, Laval and Leclercq (2010) proposed a car-
following model with “timid” and “aggressive” drivers, as observed in empirical trajectory data. This 
study showed that combining a model, without an instability mechanism (i.e., the BA version of 

340 J. Tian et al. / Transportation Research Part B 93 (2016) 338–354 

Fig. 2. The NGSIM trajectories during the time interval 07:50 am–08:05 am. Trajectories in blue have been abandoned since the vehicles have changed lane. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The standard deviations of the speed of each vehicle corresponding to Fig. 2 . The car number 1 is the leading car. The red line is a fitting line, 
which shows the concave growth pattern of traffic oscillations. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 4. (a) The standard deviation of the speed of each vehicle in all empirical examples. (b) Merging the empirical data and the experimental data. The 
fitting curve is given by y = a exp(- x / x 0 ) + y 0 , where a = - 7.91, x 0 = 55.8, y 0 = 7.8. 

Our earlier work has shown that a perfectly stable model can produce realistic oscillations provided that bounded accel-
eration (Laval and Daganzo, 2006; Laval et al., 2005; Laval, 2009; Leclercq et al., 2011; Laval, 2006) and random noise are
sensibly taken into account. Laval et al. (2010) and Chen et al. (2012a,b) formulate and validate car-following models that
also incorporate driver behavior as observed in empirical trajectory data. In the former it is conjectured that car-following
behavior changes near deceleration waves to become either timid or aggressive. Timid (aggressive) drivers will accept larger
(shorter) spacing compared to the equilibrium spacing of the fundamental diagram. This model was validated and general-
ized with more empirical data in Chen et al. (2012a,b), who also found that driver behavior changes before and after the
oscillation. These models require a minimum of four additional parameters, however.

To the best of our knowledge, Yeo and Skabardonis (2009) is the first to use empirical trajectory data to conjecture that
the cause for oscillations might be human error, i.e. anticipation and overreaction. They base their explanation on the exis-
tence of five different traffic phases. A model, however, is still lacking.

The model presented here combines a bounded vehicle acceleration model with human error to describe a parsimonious
mechanism of driver behavior. It requires only one additional parameter and reproduces macroscopic behavior – such as per-
iod and amplitude of oscillations – similarly to the more parameter-intensive models. Toward this end, Section 2 formulates
the stochastic desired acceleration model, which is the basis of the theory. Section 3 incorporates this model into a car-fol-
lowing framework along with its numerical implementation. Section 4 analyzes simulation results from an uphill segment
experiment, while Section 5 compares simulation results with a six-vehicle platoon car-following experiment. Finally, a dis-
cussion is provided in Section 6.

2. The desired acceleration model

We define ‘‘desired acceleration’’ as the acceleration the driver imposes to the vehicle when traveling at a speed vðtÞ at
time t under free-flow conditions, i.e. when unobstructed by the leading vehicle. Based on the data shown in Fig. 2, we
assume that the mean desired acceleration, aðvÞ, is a linearly decreasing function of the speed:

aðvðtÞÞ ¼ ðvc $ vðtÞÞb; ð1Þ

where vc can be interpreted as a target speed and b as the inverse relaxation time. To take into account the deviations from
the mean apparent in Fig. 2, we add a random term to (1) in the form of a white noise process with diffusion coefficient r2,
which has units of [distance]2[time]$3. It follows that to obtain the desired vehicle position, nðtÞ, one has to solve the follow-
ing system of linear stochastic differential equations:

dnðtÞ ¼ vðtÞdt; nð0Þ ¼ 0; ðaÞ
dvðtÞ ¼ ðvc $ vðtÞÞbdt þ rdWðtÞ; vð0Þ ¼ v0; ðbÞ

!
ð2Þ

where WðtÞ is a standard Brownian motion. The solution of (2) can be found in any stochastic differential equations textbook
(e.g., Øksendal, 2010; Protter, 2003); i.e.:
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Fig. 1. (a) Time–space diagram of the median lane from the NGSIM trajectory dataset collected on a 640 m-segment on southbound US 101 in Los Angeles,
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Newell’s car-following model, Laval and Leclercq, 2008), with such an inter-driver heterogeneity 
model can produce realistic oscillations.  
 The last but simplest modelling approach is to introduce human errors as random noise. The 
earliest model by this approach is by Nagel and Schreckenberg (1992), which reproduces stop-and-go 
traffic by a cellular automata model, with a breaking probability. More recently, Laval et al. (2014) 
simply added an acceleration noise, which is a function of road geometry, to the BA version of Newell’s 
car-following model, and found that the oscillations produced accord well with observation (see Fig. 
11). Furthermore, Tian et al. (2016) showed that this model can reproduce the concavity of the 
disturbance growth well. 
 
4. Future direction 
 In the future, two innovations may occur regarding flow breakdown. First, our understanding 
of breakdown may be improved by using new data. Second, we may be able to control breakdown by 
using connected and automated vehicles (CAVs). 
 Conventionally, traffic data were mainly collected by traffic detectors that are fixed at a 
location, and their pulse data or aggregated data were used for analysis. Although they enabled us to 
understand basic properties of breakdown as reviewed in the previous sections, they have clear 
limitations. That is, they do not capture the continuous spatial-temporal dynamics of traffic. Because 
breakdown is a continuous spatial-temporal phenomenon that covers approximately one hundred 
meters and a minute, it is impossible to reveal the detailed, full picture of a breakdown by 
conventional detectors. 
 

 
Fig. 12 Complete trajectory dataset obtained by series of video cameras on Hanshin Expressway, Japan (Data 
from Hanshin Exp. Co. Ltd., 2018). Top: aggregated traffic state. Bottom: trajectories near breakdown. 
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Fig. 13 Spacing data collected by probe vehicles near breakdown on Tokyo Metropolitan Expressway, Japan (Data 
from Seo et al., 2015). Red curves indicate trajectories of probe vehicles, and red areas indicate spacing between 
each probe vehicle and its leading vehicle. 
 
 Recent advancements in information and communication technology enable us to collect new 
data that capture continuous spatial-temporal traffic dynamics. Proper use of these data will improve 
the scientific understanding of breakdown. Notable examples are as follows. First, complete vehicle 
trajectory data, obtained by fixed cameras and image recognition technology, are useful experimental 
data. The data captured the complete, continuous spatial-temporal traffic dynamics of specific road 
sections where the cameras were installed. For example, NGSIM data covers an approximately 600 m 
highway section for 15 min, and Zen Traffic Data (Hanshin Exp. Co. Ltd., 2018) covers a 2 km highway 
section for 1 h. An example from Zen Traffic Data is shown in Fig. 12. Second, sampled vehicle 
trajectory data, obtained by probes or connected vehicles equipped with positioning devices, are 
becoming common owing to the widespread use of global navigation satellite systems and 
smartphones (Herrera et al., 2010). Although they do not include complete information on the traffic 
(i.e., only sampled trajectories and speed), they can cover wide-ranging areas. And third, sampled 
vehicle trajectory and spacing data, obtained by probe or connected vehicles equipped with ranging 
devices, will be useful (Seo et al., 2015). Those data capture local density and speed dynamics for wide-
ranging areas, from which the complete, continuous traffic state can be estimated. An example of 
spacing data is shown in Fig. 13. 
 CAVs will enable breakdown to be controlled. As reviewed in the previous sections, 
breakdown is likely to be emerging from certain microscopic vehicle behaviors. Thus, by properly 
designing the driving behavior of CAVs, it may be possible to prevent or alleviate breakdowns. 
Especially, cooperative driving among CAVs may be useful, because it may enable efficient longitudinal 
and lateral movements which are impossible for ordinary human-driven vehicles. In-depth 
understanding of breakdown phenomena will be essential for breakdown prevention by CAVs. 
 
Acknowledgement 
This research is partially supported by JSPS KAKENHI Grants (16K18164, 19K04637, 19H02268). 
 
References 

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y., 1995. Dynamical model of traffic 
congestion and numerical simulation. Physical Review E 51, 1035–1042. 

Brilon, W., Geistefeldt, J., Regler, M., 2005. Reliability of freeway traffic flow: a stochastic concept of 
capacity. In: Mahmassani, H.S. (Ed.), Proceeding of the 16th International Symposium on 
Transportation and Traffic Theory. Elsevier, Maryland, 125–143. 



 12 

Cassidy, M.J., Rudjanakanoknad, J., 2005. Increasing the capacity of an isolated merge by metering its 
on-ramp. Transportation Research Part B 39, 896–913. 

Chen, D., Ahn, S., Laval, J., Zheng, Z., 2014. On the periodicity of traffic oscillations and capacity drop: 
The role of driver characteristics. Transportation Research Part B 59, 117–136. 

Edie, L.C., Foote, R.S., 1958. Traffic flow in tunnels, In: Highway Research Board Proceedings, 334–344. 

Geistefeldt, J., Brilon, W., 2009. A comparative assessment of stochastic capacity estimation methods. 
In: Lam, W.H.K., Wong, S.C., Lo, H.K. (Eds.), Proceeding of the 18th International Symposium on 
Transportation and Traffic Theory. Springer, 125–143.  

Hall, F.L., Agyemang-Duah, K., 1991. Freeway capacity drop and the definition of capacity. 
Transportation Research Record 1320, 91–98. 

Hanshin Exp. Co. Ltd., 2018. Zen Traffic Datahttps://zen-traffic-data.net, accessed 2018-09-03. 

Herrera, J. C., Work, D. B., Herring, R., Ban, X. J., Jacobson, Q., Bayen, A. M., 2010. Evaluation of traffic 
data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation 
Research Part C 18 (4), 568–583. 

Jin, W.L., 2017. A first-order behavioral model of capacity drop. Transportation Research Part B 105, 
438–457. 

Jin, W.L., 2018. Kinematic wave models of sag and tunnel bottlenecks. Transportation Research Part 
B 107, 41–56. 

Kometani, E., Sasaki, T., 1958. On the stability of traffic flow. Journal of Operations Research Japan 2, 
11–22. 

Koshi, M., Iwasaki, M., Ohkura, I., 1983. Some findings and an overview on vehicular flow 
characteristics, In: Hurdle, V.F., Hauer, E., Steuart, G.N. (Eds), Proceedings of the Eighth International 
Symposium on Transportation and Traffic Theory, 403–426. 

Koshi, M., Kuwahara, M., Akahane, H., 1992. Capacity of sags and tunnels on Japanese motorways. ITE 
Journal 62, 17–22. 

Laval, J.A., Daganzo, C.F., 2006. Lane-changing in traffic streams. Transportation Research Part B 40, 
251–264. 

Laval, J.A., Leclercq, L., 2008. Microscopic modeling of the relaxation phenomenon using a 
macroscopic lane-changing model. Transportation Research Part B 42, 511–522. 

Laval, J.A., Leclercq, L., 2010. A mechanism to describe the formation and propagation of stop-and-go 
waves in congested freeway traffic. Philosophical transactions. Series A 368, 4519–41. 

Laval, J.A., Toth, C.S., Zhou, Y., 2014. A parsimonious model for the formation of oscillations in car-
following models. Transportation Research Part B 70, 228–238. 

Nagel, K., Schreckenberg, M., 1992. A cellular automaton model for freeway traffic. Journal de 
Physique I 2, 2221– 2229. 

Newell, G.F., 2002. A simplified car-following theory: a lower order model. Transportation Research 
Part B 36, 195–205. 

Okamura, H., Watanabe, S., Watanabe, T., 2000. An empirical study on the capacity of bottlenecks on 
the basic suburban expressway sections in Japan, In: Transportation Research Circular E-C018: Fourth 
International Symposium on Highway Capacity, 120–129. 

Patire, A.D., Cassidy, M.J., 2011. Lane changing patterns of bane and benefit: Observations of an uphill 
expressway. Transportation Research Part B 45, 656–666. 



 13 

Persaud, B., Hurdle, V., 1988. Some new data that challenge some old ideas about speed-flow 
relationships. Transportation Research Record 1194, 191–198. 

Seo, T., Kusakabe, T., Asakura, Y., 2015. Estimation of flow and density using probe vehicles with 
spacing measurement equipment. Transportation Research Part C 53, 134–150. 

Shiomi, Y., Taniguchi, T., Uno, N., Shimamoto, H. and Nakamura, T., 2015. Multilane first-order traffic 
flow model with endogenous representation of lane-flow equilibrium, Transportation Research Part C 
59, 198–215. 

Shiomi, Y., Yoshii, T.,   Kitamura, R., 2011. Platoon-based traffic flow model for estimating breakdown 
probability at single-lane expressway bottlenecks, Transportation Research Part B 45, 1314-1330. 

Shiomi, Y., Xing, J., Kai, H., Katayama, T., 2019. Analysis of the long-term variations in traffic capacity 
at freeway bottleneck, Transportation Research Record 2673, 390–401.  

Tian, J., Jiang, R., Jia, B., Gao, Z., Ma, S., 2016. Empirical analysis and simulation of the concave growth 
pattern of traffic oscillations. Transportation Research Part B 93, 338–354. 

Transportation Research Board, 1965/2016. Highway Capacity Manual, Transportation Research 
Board, Washington, D.C. 

Treiber, M., Kesting, A., 2013. Traffic Flow Dynamics: Data, Models and Simulation. Springer-Verlag 
Berlin Heidel- berg. 

U.S. Department of Transportation Federal Highway Administration, 2016. Next Generation 
Simulation (NGSIM) Vehicle Trajectories and Supporting Data. [Dataset]. Provided by ITS DataHub 
through Data.transportation.gov. Accessed 2019-11-18 from http://doi.org/10.21949/1504477 

Wada, K., Martínez, I., Jin, W.-L., 2020. Continuum car-following model of capacity drop at sag and 
tunnel bottlenecks, Transportation Research Part C, 113, 260-276. 

Xing, J., Muramatsu, E., Harayama, T., 2014. Balance lane use with VMS to mitigate motorway traffic 
congestion. International Journal of Intelligent Transportation Systems Research 12, 26–35. 

Yeo, H., Skabardonis, A., 2009. Understanding stop-and-go traffic in view of asymmetric traffic theory, 
In: Lam, W.H., Wong, S.C., Lo, H. (Eds.), Proceedings of the 18th International Symposium on 
Transportation and Traffic Theory, 99-115. 

Zhang, H., Kim, T., 2005. A car-following theory for multiphase vehicular traffic flow. Transportation 
Research Part B 39, 385–399.  

View publication statsView publication stats

https://www.researchgate.net/publication/342832182



