
The evolution of dynamic ridesharing system based on rational 

behaviour of users 

Dynamic ridesharing system (DRS) is a system where users can find ridesharing 

partner(s) at any time even shortly before making a trip. The DRS without 

considering individual preference may cause dissatisfied matchings of users in a 

shared vehicle and lead to the abandonment of DRS in a long term. To investigate 

the evolution of DRS, such as long-term adoption, this study develops a model of 

DRS considering the rational behaviour and learning process of the users. The 

users’ behaviour is considered as travel mode choice and ridesharing partner choice 

decisions under the expected utility maximisation manner. A day-to-day evolution 

of a DRS is simulated based on the proposed model, and the effects of users’ 

learning behaviour and some social factors to the long-term DRS adoption are 

investigated 
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1. Introduction 

Ridesharing transport is defined as a sharing of car journeys so that more than one person 

can travel in a single car. It has become attractive alternative as it compromises the 

advantages between public and private transports. It is expected to mitigate the pollution 

caused by traffic congestions and reduce resource consumption at the acceptable 

degradation of travellers’ comfort and convenience compared with conventional public 

transport (Erdoğan, Cirillo, & Tremblay, 2015). Especially, dynamic ridesharing system 

(DRS), which is a real-time and on-demand ridesharing that can continuously process 

users appearing in a sequence of time using the advantages of information and 

communication technology (Agatz et al., 2010), has been broadly studied. For example, 

if users are effectively assigned to the efficiently operated vehicles, the total vehicle miles 

can be minimised. Such assignment is considered as social optimum (SO) type of DRS 

and has been extensively investigated (Agatz et al., 2011). The vehicles operation has 

also been studied especially in demand responsive transport studies (Karbassi & Barth, 



2003). 

Aside from SO-based DRS, the user-driven nature in DRS should not be 

overlooked. In general, ridesharing trip requires at least two users who desire to share a 

ride together. It means that user’s itinerary of ridesharing trip (i.e. travel route, travel 

time) strongly depends on ridesharing partner’s behaviour and itinerary. Moreover, user’s 

behaviour could be adapted over days through their experience on DRS performance. 

This kind of rational behaviour of users are often overlooked by the SO-based DRS 

studies. For instance, if users can be matched with a desirable partner within an acceptable 

period of time, users are then willing to continue using DRS. It implies that sufficiently 

large number of users can convince more users to rideshare—a positive feedback. On the 

contrary, if users have too high expectation on DRS, users may fail to be matched with a 

desirable partner within acceptable period of time, so users may not continue 

ridesharing—a negative feedback. This mixture of positive and negative feedbacks makes 

the evolution of the DRS complicated and difficult to be predicted by a naïve model 

(Rohlfs, 1974). Therefore, the methodology to derive DRS’s performance and its 

characteristics based on user’s behaviour is necessary.  

One of the methodologies to describe aforementioned system’s evolution based 

on user’s rational behaviour is day-to-day dynamics model of the system (Mahmassani, 

1990). Specifically, the day-to-day dynamics of DRS is an adjustment (i.e. learning) 

process of users’ travel mode choice between ridesharing and others. It can be described 

by mutual relationship between users’ response (e.g. decision on mode choice) and users’ 

experience, expectation, or perceived information (e.g. fare reduction, travel time 

increase, waiting time, ridesharing partner). However, the day-to-day dynamics of DRS 

based on users’ rational behaviour have not been well studied. 

This study aims to investigate the evolution of DRS and its properties based on 

rational travel mode and partner choices of users. Specifically, this study formulates a 

behaviour-based DRS model that explicitly describes the mechanism and consequence of 

the within-day model to the day-to-day model and vice versa based on users’ rational 

behaviour on travel mode and partner choices. The rational behaviour means that user 

makes decisions by maximising the expected utility. Then, the evolution of the DRS is 

simulated based on the proposed model. The effects of learning behaviour of users and 

social conditions to the performance of DRS are investigated. 

The remainder of the paper is organised as follows. In section 2, existing studies 

on ridesharing and day-to-day dynamics are reviewed. In section 3, the model of 

behaviour-based DRS is formulated. In section 4, the numerical experiments are 



conducted to investigate the day-to-day dynamics of the formulated model. This paper is 

concluded in section 5.  

2. Literature review 

The existing DRS models are reviewed in section 2.1. The concept of day-to-day 

dynamics is introduced together with the review of day-to-day dynamics in DRS studies 

in section 2.2. Finally, we summarise what has not been studied and explain the main 

originality of our study in section 2.3.  

2.1. Models for DRS 

In this study, the models of DRS can be categorised into two types: SO-based model, and 

behaviour-based model, which are reviewed as follows.  

2.1.1. SO-based model 

Most of the DRS models have been formulated as SO-based model with the objective of 

optimising social cost such as total travel distance minimisation, total travel time 

minimisation, and number of matching pairs maximisation (Agatz et al., 2011; Agatz et 

al., 2012; Di Febbraro, Gattorna, & Sacco, 2013; Furuhata et al., 2013; Hosni, Naoum-

Sawaya, & Artail, 2014; Li et al., 2014; Shen, Huang, & Zhao, 2016). The SO solution is 

basically enforced on users by the service providers. This means that individuals’ 

decision-making behaviour is discarded, their choices (e.g. ridesharing partner, 

driver/rider role) are fully controlled by the DRS service provider, and each user’s 

individual utility is not necessarily improved by using DRS service. 

2.1.2. Behaviour-based model 

Users’ decision-making in DRS (e.g. mode choice, ridesharing partner choice) has been 

modelled with behavioural assumptions to study the effect of user-driven nature in DRS. 

Some studies developed rule-based behaviour model in which users’ decision will 

be made if the specific conditions are satisfied. Fagnant & Kockelman (2015) and Levin 

et al. (2016) have developed DRS models by assuming that individual trip will be shared 

if the trip duration does not exceed the specified acceptable threshold, in order to analyse 

their route assignment problem. In these studies, user’s utility is not necessarily 

maximised, meaning that users are not very rational. Kleiner et al. (2011) have proposed 



the parallel auction-based DRS that modelled a more rational users’ behaviour on 

ridesharing partner decision where individual makes decision by maximising her/his 

utility under the restriction of auction procedure. The auction-based model was further 

employed by Nourinejad & Roorda (2016) to formulate a decentralised behaviour-based 

DRS. 

Other studies have employed the matching theory (Gale & Shapley, 1962) to 

describe users’ rational behaviour when all users try to maximise their utility. In the 

matching theory, stable matching solution is a matching result where no participant has 

incentive to change her/his matched partner, meaning that it shall be satisfied by 

completely rational users. Wang (2013) and Yotsutsuji, Sasaki, & Maruyama (2016) 

adopted a stable marriage problem (Gale & Shapley, 1962) to find a stable matching 

solution between single driver and single rider in a within-day context of DRS. 

Thaithatkul et al. (2015a, 2015b, 2016) used modified versions of the stable roommates 

problem (Knuth, 1997) to represent the static and dynamic matching problems between 

passengers by considering user preference. 

2.2. Day-to-day dynamics 

In transport studies, the day-to-day dynamics has been studied to describe the evolution 

of system (e.g. adjustment of mode choice, route choice) over days  (Smith, 1984; Watling, 

2003). The evolution of the system is a consequence of users’ behaviour and vice versa. 

To be specific, users adapt their behaviour over days according to their experience on the 

system’s outcome, while the outcome of the system is the result of users’ behaviour. Such 

mechanism can lead the system to evolve to the different state depending on various 

conditions (Smith et al., 2013).  

In ridesharing-related studies, Djavadian & Chow (2016) recently proposed an 

agent-based day-to-day dynamics of flexible transport service involving ridesharing for 

evaluating their operating policies. The individual decisions consist of choosing a mode 

which maximises utility and choosing departure time which minimises schedule delay. 

As assigning partner to users by dynamic vehicle routing problem is one of their operating 

policies, the user’s behaviour on choosing partner is not considered. 

2.3 Discussion 

Because of a user-driven nature of DRS, modelling users’ behaviour is considerable to 

describe the DRS performance and its evolution which is a consequence of users’ 

behaviour. Although some studies have modelled DRS considering users’ behaviour, 



their models mainly consider behaviour on ridesharing partner choice in within-day 

context without explicitly considering the behaviour on mode choice decision. In practice, 

user’s decision in DRS includes both travel mode and partner choices which are strongly 

dependent upon the user’s learning process in day-to-day context.   

Moreover, the day-to-day dynamics of DRS is important to be investigated as it 

can describe the socially important aspects of the system such as the feasibility and 

sustainability of the DRS. For example, one of the reasons of the decreasing number of 

carpooling users (American Association of State Highway and Transportation Officials, 

2014) can be considered as a day-to-day process where users decide not to use carpooling 

as their previous carpooling trips did not satisfy their preference. The similar mechanism 

may exist in DRS. Therefore, to predict the consequence of such mechanism of DRS, 

day-to-day process of DRS should be modelled considering user’s behaviour 

comprehensively. Moreover, the appropriate control strategies1 to optimise DRS can be 

developed based on a day-to-day model. 

To fill the research gaps, in this study, user’s behaviour in DRS is modelled as an 

integrated model of within-day and day-to-day models. The user’s rational behaviour on 

travel mode and partner choices in the within-day model is represented by the expected 

utility maximisation concept because of its high rationality comparing with rule- and 

auction-based concepts which existing studies employed.  

3. Behaviour-based DRS model development 

The framework of considering behaviour-based DRS is firstly explained in section 3.1. 

Then, the behaviour-based DRS is formulated in sections 3.3 – 3.5 under the assumptions 

explained in section 3.2. The formulation is basically divided into three parts: user’s 

utility function (section 3.3), within-day model (section 3.4), and day-to-day model 

(section 3.5). The parameters and variables used in the model formulation are listed in 

Table 1.  

3.1. Framework of behaviour-based dynamic ridesharing system 

The main components of behaviour-based DRS are users and ridesharing service provider. 

                                                 

1 The control strategy is, for example, giving incentive (positive or negative) to users based on 

difference between solution at stationary state of DRS and SO solution.  



Users are travellers who may have willingness to search for partner(s) to share their 

upcoming trip. Ridesharing service provider offers a service of DRS where users can find 

partner(s) shortly before making a trip, and operates the system and vehicles.  

Users in the DRS make all ridesharing-related decisions by themselves. Once 

users appear in transport system to make a trip, they firstly make a decision whether to 

use the DRS—this is a travel mode choice. If users choose the DRS, they can find the 

desirable partner(s) based on their preference—this is a partner choice. The matching 

result is a spontaneous consequence of every user’s utility maximisation. If users are 

matched with the desirable partner(s), they then make a ridesharing trip. Otherwise, users 

may stop searching for the desirable partner(s) at any time and choose other travel mode 

(i.e. waiting choice). These decisions can be conceptually shown in Figure 1, where 

waiting choice is represented by travel mode choice as it is the decision between 

ridesharing (i.e. continue using the DRS) and other travel mode (i.e. stop using the DRS). 

Ridesharing service provider’s roles are: to offer the DRS that facilitates matching 

process, to operate the vehicles, and to decide fare system. The vehicle operation and fare 

system determine the cost and benefit of using the DRS from the users’ point of view. As 

the first step of this behaviour-based DRS modelling, the vehicle operation and fare 

system are not explicitly modelled. The travel time (which is a result of vehicle operation) 

and fare functions are assumed given.  

To model the aforementioned user’s decision making process, one has to 

determine utility of each choice. The utility of ridesharing with given partner or other 

conventional travel modes can be easily determined. Contrarily, the (expected) utility of 

ridesharing with unknown partner, which represents utility of “Rideshare” option in 

“Mode choice decision”, is not obvious because it involves other users’ behaviour. The 

proposed model tackles this problem by introducing the concept of day-to-day process.  

3.2. Key assumption 

The behaviour-based DRS is formulated under following key assumptions 

(a) A mean of transport is a for-hire vehicle with two available passenger seats.  

(b) Travel demand is assumed homogenous during a certain time period. Users 

recurrently travel over days. In each day, users intermittently and randomly appear 

in the transport system in a sequence. 

(c) Expected utility maximisation concept is employed for individual decision-

making strategy. 



(d) Utility is evaluated by monetary-based factors consisting of cost of in-vehicle 

travel time, travel fare, and penalty of excessive travel time.  

(e) Penalty of excessive travel time is a cost that occurs if user’s travel time is longer 

than her/his acceptable travel time which is a monotonically increasing function of 

excessive travel time.  

(f) Individual expectation-of-utility is determined through day-to-day learning 

process, which is the weighted sum of private information based on personal memory 

and the collective information from others.  

The process in the model is illustrated in Figure 2. Regarding the assumption (a), 

travel mode choice is limited to ridesharing and riding alone (i.e. “Yes” and “No” in <Use 

DRS?> decision node in Figure 2, respectively). A users’ partner choice is a one-to-one 

matching problem for simplicity. The mentioned for-hire vehicle can be, for example, a 

conventional taxi or an autonomous taxi (Fagnant & Kockelman, 2015).  

Regarding the assumption (b), considering the large population, the arrival of 

users is assumed completely random (Poisson arrival) with the constant arrival rate during 

a certain time period (e.g. rush hours)2. Due to the randomness of users’ arrival, users do 

not know other users’ arrival time and travel itinerary in advance. Therefore, a user with 

rational behaviour makes the decisions by maximising the expectation-of-utility under 

incomplete information in assumption (c). 

Regarding assumption (d), in-vehicle travel time of ridesharing is larger than or 

equal to that of travelling alone, because of the detour. Travel fare is basically deducted 

by ridesharing. The exact values of the travel time and fare depend on itineraries of the 

user and partner (Nielsen et al., 2015). Penalty of excessive travel time stated in 

assumption (e) can be caused by the waiting time for ridesharing partner and/or detour. 

User’s expectation-of-utility can be updated by learning the DRS over days. 

Regarding the assumption (f), users are assumed to learn the DRS from two sources: 

private information and information collected from others, similar to some existing 

researches on day-to-day adjustment process (Djavadian & Chow, 2016; Iryo, 2016). The 

private information is what user has privately learned about DRS so far. Specifically, it 

is the information of her/his latest ridesharing experience blended with her/his memory. 

                                                 

2 This means that the model is applied to the analysis of DRS usage for a certain time interval 

with homogeneous travel demand (e.g. rush hours) rather than the analysis of entire day. 



The collective information is supplemental information provided by external sources via 

any communication channels, such as private communication with others and advertising. 

The collective information is assumed to be the average performance that users who 

rideshared in previous day experienced.  

3.3. Utility 

The utility function 𝑣𝑖,𝑘(𝑗, 𝑡) of user 𝑖 ridesharing with user 𝑗 at time 𝑡 in day 𝑘, where 𝑖 

and 𝑗 are members in 𝑺𝑘, is defined as 

 𝑣𝑖,𝑘(𝑗, 𝑡) = −𝑔𝑖(𝑗) − 𝑓𝑖(𝑗) − 𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡)) for ∀𝑖, 𝑗 ∈ 𝑺𝑘, (1) 

with the travel time 

 𝑇𝑇𝑖,𝑘(𝑗, 𝑡) = 𝜏𝑖,𝑘(𝑡) + 𝑥𝑖(𝑗) for ∀𝑖, 𝑗 ∈ 𝑺𝑘. (2) 

Notice that utility of travelling alone for user 𝑖 is expressed as 𝑣𝑖,𝑘(𝑖, 𝑡).  

Cost of in-vehicle travel time 𝑔𝑖(𝑗) and travel fare 𝑓𝑖(𝑗) of user 𝑖 are changed 

according to in-vehicle travel time involving the necessary detour for ridesharing which 

directly depends on user 𝑗’s itinerary. The penalty of excessive travel time 𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡)) 

represents the cost when a user arrives at her/his destination later than desire. The travel 

time 𝑇𝑇𝑖,𝑘(𝑗, 𝑡) is period of time from her/his appearance in the transport system to the 

arrival time to the destination as conceptually shown in Figure 3. The functions 𝑔𝑖(𝑗), 

𝑓𝑖(𝑗), 𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡)), and 𝑥𝑖(𝑗) are required to be specified by other models explained in 

the later sections.  

3.4. Within-day model 

3.4.1. Expectation-of-utility 

If users do not know who is the partner (due to the randomness of users’ arrival sequence 

𝑺𝑘), then user’s decision will be made by maximising individual expectation-of-utility. 

Following the Equation (1), the expectation-of-utility for ridesharing3 𝐸𝑉𝑖,𝑘(𝑡) of user 𝑖 

                                                 

3 Expectation-of-utility is not equivalent to the expected utility as travel demand is assumed 

homogeneous so that the probabilistic aspect of stochastic process is not considered. 



at time 𝑡 in day 𝑘 is defined as: 

 𝐸𝑉𝑖,𝑘(𝑡) = −𝐸𝐺𝑖,𝑘 − 𝐸𝐹𝑖,𝑘 − 𝑑𝑖(𝜏𝑖,𝑘(𝑡) + 𝐸𝑇𝑇𝑖,𝑘)  for ∀𝑖 ∈ 𝑺𝑘. (3) 

The expectations for ridesharing on cost of in-vehicle travel time 𝐸𝐺𝑖,𝑘, travel fare 𝐸𝐹𝑖,𝑘, 

and travel time 𝐸𝑇𝑇𝑖,𝑘  are constant in each day 𝑘  as travel demand is assumed 

homogeneous, which are realised through a day-to-day learning process explained in 

section 3.5. The individual expectation-of-utility for riding alone 𝐸𝑉𝑖,𝑘
𝐴 (𝑡) is assumed to 

be known equal to 𝑣𝑖,𝑘(𝑖, 𝑡) as a conventional mode.  

3.4.2. Mode choice 

The travel mode choice decision of user 𝑖 at time 𝑡 is defined as a deterministic function 

which can be expressed as 

 𝜙𝑖,𝑘(𝑡) =  {
1   if 𝐸𝑉𝑖,𝑘(𝑡 + Δ𝑡) > 𝐸𝑉𝑖,𝑘

𝐴 (𝑡) 

0   if 𝐸𝑉𝑖,𝑘(𝑡 + Δ𝑡) ≤ 𝐸𝑉𝑖,𝑘
𝐴 (𝑡)

 for ∀𝑖 ∈ 𝑺𝑘 (4) 

following the expected utility maximisation concept. Assuming that the matching process 

is done at every specific time interval ∆𝑡 to involve newly arrived users, user 𝑖 uses the 

DRS (i.e. 𝜙𝑖,𝑘(𝑡) = 1, “Yes” at <Use DRS?> decision node in Figure 2) only if finding a 

partner in the incoming matching at time 𝑡 + Δ𝑡 is expected to be better than travelling 

alone at time 𝑡. If so, s/he will then make a partner choice decision at  𝑡 + Δ𝑡 explained 

in the following section. Otherwise, user 𝑖  will travel alone at time 𝑡  denoted as his 

exiting time 𝑡𝑖,𝑘
𝑒 . Her/his actual travel mode is denoted as 𝜙𝑖,𝑘

𝑒  which is 𝜙𝑖,𝑘(𝑡𝑖,𝑘
𝑒 ) = 0 (i.e. 

“No” at <Use DRS?> decision node in Figure 2). S/he then receives utility at 𝑣𝑖,𝑘(𝑖, 𝑡𝑖,𝑘
𝑒 ) 

where her/his time spent in DRS 𝜏𝑖,𝑘(𝑡𝑖,𝑘
𝑒 ) is denoted as 𝜏𝑖,𝑘

𝑒 . 

3.4.3. Partner choice 

A partner choice can be modelled by using any existing behaviour-based model; however, 

in this study, the static one-to-one passenger matching problem modified from stable 

roommate problem (Knuth, 1997; Thaithatkul et al., 2015a) is employed to represent a 

                                                 

However, expectation-of-utility becomes equivalent to the expected utility at the stationary 

state of the system where users do not change their behaviour over days. 



matching process because of its high rationality explained earlier. The employed model 

can result the stable matching among current users if exists. The stable matching is a set 

of matching pairs between two users where there are no two users, who are not paired in 

the stable matching solution, prefer each other to their paired partner. If stable matching 

is not unique (Irving, 1985), the solution will be the one that provides the maximum total 

ridesharing utility. In case the stable matching does not exist among any users, those users 

then do not match with any user but themselves.  

The input of the employed model is so-called preference list which is, for example, 

a list that user 𝑖  sorts all the existing users in DRS at time 𝑡 + 𝛥𝑡 (including user 𝑖) 

corresponding to 𝑣𝑖,𝑘(𝑗, 𝑡 + 𝛥𝑡). Under the expected utility maximisation concept, at time 

𝑡 + 𝛥𝑡, user 𝑖 prefers to rideshare with any user 𝑗 if and only if 𝑣𝑖,𝑘(𝑗, 𝑡 + 𝛥𝑡) is better 

than travelling alone 𝐸𝑉𝑖,𝑘
𝐴 (𝑡 + 𝛥𝑡) as well as waiting for the next matching  𝐸𝑉𝑖,𝑘(𝑡 +

2Δ𝑡). With this users’ preference list, the matching solution among existing users can be 

obtained using the algorithm proposed by Irving (1985).  

The solution of matching round 𝑟 (given that each executing matching at every 

∆𝑡 is called matching round 𝑟) is a set of matching pairs where user 𝑖  matches with 

partner 𝑚𝑖,𝑘
𝑟 , which can result in two types: (i) 𝑚𝑖,𝑘

𝑟 = 𝑗 where 𝑖 ≠ 𝑗, and (ii) 𝑚𝑖,𝑘
𝑟 = 𝑖. 

Type (i) means a stable ridesharing pair where user 𝑖 and user 𝑗 prefer to share a trip to 

each other. Note that if 𝑚𝑖,𝑘
𝑟 = 𝑗 where 𝑖 ≠ 𝑗 holds, then 𝑚𝑗,𝑘

𝑟 = 𝑖 as well. This matching 

pair always satisfies the condition 𝑣𝑖,𝑘(𝑚𝑖,𝑘
𝑟 , 𝑡 + Δ𝑡) ≥ max {𝐸𝑉𝑖,𝑘

𝐴 (𝑡 + Δ𝑡), 𝐸𝑉𝑖,𝑘(𝑡 +

2Δ𝑡)}. Then 𝑚𝑖,𝑘
𝑟  becomes an actual partner of user 𝑖 in day 𝑘 denoted as 𝑚𝑖,𝑘

𝑒 . So that 

user 𝑖 exits the DRS at time 𝑡𝑖,𝑘
𝑒  and makes a ridesharing trip with utility 𝑣𝑖,𝑘(𝑚𝑖,𝑘

𝑒 , 𝑡𝑖,𝑘
𝑒 ); 

her/his actual mode choice is 𝜙𝑖,𝑘
𝑒 = 1. These users who eventually rideshare are called 

ridesharing users. Type (ii) means that there is no other user that user 𝑖 can be stably 

paired with. In this case, user 𝑖 makes a waiting decision represented by Equation (4) 

where 𝑡 = 𝑡 + Δ𝑡. 

3.5. Day-to-day model 

To process the within-day model, one has to determine values of  𝐸𝐺𝑖,𝑘, 𝐸𝐹𝑖,𝑘, and 𝐸𝑇𝑇𝑖,𝑘. 

In this study, these expectation variables are determined by the day-to-day model in which 

a user learns DRS performance following the assumption (f) which can be expressed as  

𝐸𝐺𝑖,𝑘 = 𝛾𝑖 [𝛽𝑖𝑔𝑖 (𝑚𝑖,𝐾𝑖,𝑘

𝑒 ) + (1 − 𝛽𝑖)𝐸𝐺𝑖,𝐾𝑖,𝑘
] + (1 − 𝛾𝑖)𝛼̅𝑔,𝑘−1𝑔𝑖(𝑖)      for ∀𝑖 ∈ 𝑺𝑘, (5) 



𝐸𝐹𝑖,𝑘 = 𝛾𝑖 [𝛽𝑖𝑓𝑖 (𝑚𝑖,𝐾𝑖,𝑘

𝑒 ) + (1 − 𝛽𝑖)𝐸𝐹𝑖,𝐾𝑖,𝑘
] + (1 − 𝛾𝑖)𝛼̅𝑓,𝑘−1𝑓𝑖(𝑖)        for ∀𝑖 ∈ 𝑺𝑘,  (6) 

𝐸𝑇𝑇𝑖,𝑘 = 𝛾𝑖 [𝛽𝑖 (𝜏𝑖,𝐾𝑖,𝑘

𝑒 + 𝑥𝑖 (𝑚𝑖,𝐾𝑖,𝑘

𝑒 )) + (1 − 𝛽𝑖)𝐸𝑇𝑇𝑖,𝐾𝑖,𝑘
] 

+(1 − 𝛾𝑖)[𝜏̅𝑘−1 + 𝛼̅𝑥,𝑘−1𝑥𝑖(𝑖)] for ∀𝑖 ∈ 𝑺𝑘.(7) 

These mean that a user learns DRS as a weighted sum of private information at weight 𝛾𝑖 

and the collective information at weight 1 − 𝛾𝑖  where 0 ≤ 𝛾𝑖 ≤ 1 . The private 

information is represented by her/his memory blended with her/his latest ridesharing 

experience at rate 𝛽𝑖  where 0 ≤ 𝛽𝑖  ≤ 1 . The 𝐾𝑖,𝑘  denotes the day of user 𝑖 ’s last 

ridesharing trip as of day 𝑘. The collective information is represented by the average DRS 

performance of previous day 𝑘 − 1 defined as 

 𝛼̅𝑔,𝑘 =
∑ 𝜙𝑖,𝑘

𝑒 (𝑔𝑖(𝑚𝑖,𝑘
𝑒 ) 𝑔𝑖(𝑖)⁄ )𝑖∈𝑺𝑘

∑ 𝜙𝑖,𝑘
𝑒

𝑖∈𝑺𝑘

, (8) 

 𝛼̅𝑓,𝑘 =
∑ 𝜙𝑖,𝑘

𝑒 (𝑓𝑖(𝑚𝑖,𝑘
𝑒 ) 𝑓𝑖(𝑖)⁄ )𝑖∈𝑺𝑘

∑ 𝜙𝑖,𝑘
𝑒

𝑖∈𝑺𝑘

, (9) 

 𝜏𝑘̅ =
∑ 𝜙𝑖,𝑘

𝑒 𝜏𝑖,𝑘
𝑒

𝑖∈𝑺𝑘

∑ 𝜙𝑖,𝑘
𝑒

𝑖∈𝑺𝑘

, (10) 

 𝛼̅𝑥,𝑘 =
∑ 𝜙𝑖,𝑘

𝑒 (𝑥𝑖(𝑚𝑖,𝑘
𝑒 ) 𝑥𝑖(𝑖)⁄ )𝑖∈𝑺𝑘

∑ 𝜙𝑖,𝑘
𝑒

𝑖∈𝑺𝑘

. (11) 

Note that in order to normalise the absolute difference of ridesharing partner’s itinerary, 

the performance indices  𝛼̅𝑔,𝑘, 𝛼̅𝑓,𝑘, and 𝛼̅𝑥,𝑘 in Equations (8), (9), and (11) are defined as 

relative values comparing ridesharing trip with that of travelling alone. Meanwhile, the 

average waiting time 𝜏𝑘̅  in Equation (10) is directly evaluated. In a case that no one 

rideshares in day 𝑘, it means that DRS is abandoned and its performance is not evaluated. 

Based on this learning, users may change their decision over days which could 

affect the overall DRS average performance. If users learn that they cannot increase their 

utility by changing their mode choice and do not change their mode choice over days, this 

state is called stationary state of DRS. Note that the initial condition of the day-to-day 

dynamics or the expectations for the first day of adopting DRS must be given exogenously. 



3.6. Discussion 

In order to complete the proposed model, 𝑥𝑖(𝑗), 𝑓𝑖(𝑗), 𝑔𝑖(𝑗), and 𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡)) have to 

be specified. They can be specified by employing certain types of models: traffic flow 

and vehicle operation model for 𝑥𝑖(𝑗), fare system for 𝑓𝑖(𝑗), personal perception on 

sharing a private space during a trip with other for 𝑔𝑖(𝑗), and schedule late cost for 

𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡)). In the numerical example in section 4, we consider a simple specification 

to demonstrate the model’s basic features explained in section 4.2.  

The model parameter ∆𝑡 has to be specified by service provider. If Δ𝑡 is specified 

to be small, user’s waiting time for ridesharing partner is expected to be shorter than larger 

Δ𝑡 as newly arrived users can be quickly involved in the matching process. On the other 

hand, if Δ𝑡 is specified to be large, users could be matched with a more desirable partner 

as there are more choices comparing with small Δ𝑡. 

4. Numerical experiment 

The objectives of numerical experiments are firstly explained in section 4.1. The proposed 

model is specified for numerical experiments in section 4.2. The experimental settings 

are described in section 4.3. Then the results are explained in section 4.4 and discussed 

in section 4.5.  

4.1. Objectives of numerical experiment 

The numerical experiments are conducted to quantitatively investigate the evolution of 

DRS under different user’s learning behaviour and specified social factors and to obtain 

meaningful insights of DRS. Even though some of the characteristics can be 

straightforwardly understood from the qualitative comprehension (e.g. low demand leads 

to failure of DRS), some aspects can hardly be determined without numerical experiments 

due to the general complexity of DRS explained earlier (e.g. what is the minimum demand 

(critical mass) to sustainably operate DRS?).  

4.2. Model specification for numerical experiments 

The components of utility in Equation (1) (i.e. 𝑥𝑖(𝑗), 𝑓𝑖(𝑗), 𝑔𝑖(𝑗), and 𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡))) are 

specified as follows. A ridesharing trip between two travellers can consist of three 

durations (Figure 4): detouring for picking up partner 𝑎1,𝑖(𝑗), riding with partner 𝑏𝑖(𝑗), 

heading to destination after dropping off partner 𝑎2,𝑖(𝑗). The travel time of these three 



durations are given proportional to the Euclidian distance which are dependent on 

itineraries of user and partner. Assuming that vehicles are effectively operated, vehicles’ 

dispatching time is neglected and traffic is free-flowing. The 𝑥𝑖(𝑗) can then be expressed 

as  

𝑥𝑖(𝑗) = 𝑎1,𝑖(𝑗) + 𝑏𝑖(𝑗) + 𝑎2,𝑖(𝑗).                                 (12) 

The fare is considered to be equally shared with partner for the duration of 

ridesharing. Given that 𝛼 is a fare rate for one unit of travel time, a fare for the entire 

ridesharing trip is obtained as 

𝑓𝑖(𝑗) = 𝛼(𝑎1,𝑖(𝑗) + 𝑎2,𝑖(𝑗)) + (𝛼/2)𝑏𝑖(𝑗).                           (13) 

Given that the costs of in-vehicle travel time during riding alone and ridesharing 

for one unit of time are different and denoted as 𝜇1 and 𝜇2, respectively, the cost of in-

vehicle travel time for the entire trip 𝑔𝑖(𝑗) is expressed as  

𝑔𝑖(𝑗) = 𝜇1(𝑎1,𝑖(𝑗) + 𝑎2,𝑖(𝑗)) + 𝜇2𝑏𝑖(𝑗).                          (14) 

The 𝜇2 can be larger than 𝜇1 due to, for example, the discomfort of sharing private space 

when ridesharing.  

 The penalty of excessive travel time is specified similar to Arnott, De Palma, & 

Lindsey (1999) as  

𝑑𝑖(𝑇𝑇𝑖,𝑘(𝑗, 𝑡)) = 𝜇1(𝑇𝑇𝑖,𝑘(𝑗, 𝑡) − 𝑇𝑇𝑖,𝑘
∗ )2,                          (15) 

where 𝑇𝑇𝑖,𝑘
∗  denotes the acceptable travel time.    

 The parameters are specified as follows. The model parameter ∆𝑡 is given at one 

unit of time. This value seems fair enough when there is approximately one user appearing 

in transport system at every one unit of time (𝜆𝑆 = 1) as it means that the matching is 

processed at every time new user is expected to use the DRS. The in-vehicle travel time 

for ridesharing is considered to cost 50% more than that of riding alone similar to the 

investigation from Hunt & McMillan (1997). Given that the cost of in-vehicle travel time 

for riding alone is at 0.1 unit of money per one unit of time (𝜇1 = 0.1), ridesharing then 

costs 0.15 unit of money (𝜇2 = 0.15). Note that the larger  𝜇2, the lower the DRS adoption 

level is. Such effect becomes less significant when average travel distance of all users 

becomes shorter (see the result of sensitivity analysis in Appendix). The fare for travelling 

one unit of time is given to be 10 times larger than the cost of in-vehicle travel time for 

riding alone (𝛼 = 1) similar to taxi fare in Tokyo, Japan comparing with its average cost 

of in-vehicle travel time (Kato, Tanishita, & Matsuzaki, 2010). Lastly, the acceptable 

travel time 𝑇𝑇𝑖,𝑘
∗  is given to be 10% larger than travel time without using DRS.  



4.3 Numerical experiment settings 

4.3.1. Numerical experiment design  

Users’ OD pattern, arrival rate, and users’ learning behaviour are considered as input 

parameters. Each input parameters setting is called scenario. For each scenario, the 

experiment is conducted for five replications to obtain the average results. Specifically, 

the experiment on each scenario is conducted for five times on different sets of users 

generated from random seeds, where one set contains 500 users travelling from many 

origins to many destinations in two-dimensional city. For each replication, these 500 users 

continue visiting the transport system with the same OD pattern but random arrival over 

one thousand days. This design is conceptually visualised in Figure 5 where each grey 

shaded row represents one replication.  

The results are evaluated at the near-stationary state instead of the stationary state 

as the stationary state is difficult to be reached in the numerical experiment as well as in 

practice. The near-stationary state is defined using the limit of sequence concept similar 

to some existing day-to-day dynamics studies (Bie & Lo, 2010)—namely, a state of DRS 

at a certain day is near-stationary if the number of ridesharing users converges to any 

point within the specified measure of closeness for recent one hundred consecutive days. 

The measure of closeness is given at ±5% of total users. The number of ridesharing users 

(i.e. ∑ 𝜙𝑖,𝑘
𝑒

𝑖∈𝑺𝑘
) and long-term DRS performance (i.e. 𝛼̅𝑔,𝑘 , 𝛼̅𝑓,𝑘 , 𝜏𝑘̅  ,  𝛼̅𝑥,𝑘 , and total 

vehicle miles travelled (VMT)) are evaluated at the near-stationary state if exists (red 

shaded solid boxes in Figure 5). Besides that, the DRS evolution is obtained by averaging 

the number of ridesharing users for each day 𝑘 of all replications (blue shaded dashed 

boxes in Figure 5). The DRS performance of each day 𝑘 is only evaluated among users 

whose arrival time 𝑡𝑖,𝑘
𝑎  is within [0.1𝑇𝑘, 0.9𝑇𝑘], where 𝑇𝑘 is the total time steps that all 

500 users appear in transport system. This is to avoid the effects of insufficient users and 

time caused by beginning and ending period of a finite length day.  

4.3.2. Input scenarios 

The scenarios on social factors are given as follows. Five scenarios of OD patterns are 

considered to represent several land use patterns (Figure 6). The origins and destinations 

are independently and randomly sampled by the multivariate uniform distributions with 

the same radius of 100 units of distance. In other words, a user’s trip is generated by 

connecting origin and destination randomly. The OD pattern 1 represents the commuting 

travel pattern where the origins and destinations are distributed over the same centre. The 



rest OD patterns 2 – 5 are where the centres of destination’s distribution are 50, 100, 150, 

and 200 units of distance away from the centre of origin’s distribution, respectively. The 

averages distance between OD pairs for OD patterns 1 – 5 are 89.44, 99.98, 128.20, 

167.50, and 212.60, respectively. Users’ arrival rate is presented by average travel 

demand within one unit of time 𝜆𝑆 as it is assumed to be completely random (Poisson 

arrival). Six values of 𝜆𝑆 are considered as follows: 0.5, 1, 2, 3, 4, and 5 to represent the 

increasing travel demand, which also imply the increasing number of partner choices in 

each matching round.  

Regarding users’ learning behaviour, all users are assumed to learn the DRS from 

their private experience at the same learning rate and update rate of memory, so that 𝛾𝑖 =

𝛾 for ∀𝑖 ∈ 𝑺𝑘 and 𝛽𝑖 = 𝛽 for ∀𝑖 ∈ 𝑺𝑘, respectively. 

The initial conditions of DRS performance for all scenarios are given at the best 

conditions where users can immediately share their entire trip with ridesharing partner as 

follows: 𝛼̅𝑔,0 = 1.5, 𝛼̅𝑓,0 = 0.5, 𝜏0̅ = 0, and 𝛼̅𝑥,0 = 1. It is expected that such initial state 

is not stable; the number of ridesharing users will change over days and may converge to 

the near-stationary state if exists. Note that the dependency of DRS’s evolution and its 

near-stationary state on the initial conditions has been tested to be not very strong.  

4.4. Results 

Firstly, the effects of users’ learning behaviour to the DRS’s adoption and evolution are 

presented in section 4.4.1. The DRS evolution for different social factors are presented in 

section 4.4.2 with the detailed DRS performances at its near-stationary state in section 

4.4.3. Lastly, the spatial characteristics of ridesharing users are investigated in section 

4.4.4.  

4.4.1. Effects of users’ learning behaviour 

The effects of different users’ learning behaviour to the DRS in term of number of 

ridesharing users at the near-stationary state are shown in Figure 7 for OD patterns 1, 3, 

and 5 with  𝜆𝑆 at 1 user/unit of time. DRS tends to have larger adoption when users learn 

more from collective information (lower 𝛾). However, the case when excessive learning 

from collective information can result in lower adoption level is found in OD pattern 1 

(Figure 7 (a)). The results also show the positive effects of individual memory where 

learning more from their memory results the larger adoption of DRS (lower 𝛽). On the 

other hand, if users learn only from their latest ridesharing experience (without learning 

from individual memory and collective information;  𝛽 = 1, 𝛾 = 1), DRS turns to be 



abandoned as no one continues ridesharing. 

The evolution when users learn DRS from collective information at different 

learning rate 𝛾 when fixing 𝛽 at 0.8 is shown in Figure 8 for OD pattern 1 with 𝜆𝑆 at 1 

user/unit of time. According to this Figure, 𝛾 = 0.8 has the largest number of users at the 

near-stationary state. The underlying mechanism could be explained as follows. Without 

learning from collective information (𝛾 = 1), users gradually stop ridesharing, and DRS 

is eventually abandoned. On the other hand, for excessive learning from collective 

information (𝛾 ≤ 0.5), some of users whose expectations are substantially degraded by 

the provided collective information do not continue ridesharing.  

4.4.2. Effects of OD pattern and demand to overall dynamics 

The average numbers of ridesharing users at the near-stationary state for all social factors 

scenarios are shown in Figure 9. Regarding the learning parameters, for both cases (upper: 

𝛾 = 0.5 and 𝛽 = 1, lower 𝛾 = 0.5 and 𝛽 = 0.8), DRS of the specific scenario of OD 

pattern and travel demand evolves to the similar near-stationary state. 

The DRS adoption level increases from OD patterns 1 to 5. It means that DRS 

will be frequently utilised if direction of trips is positively correlated, which makes sense. 

Regarding demand rate 𝜆𝑠, the DRS adoption level increases as demand increases, which 

also makes sense. In some scenarios number of users is zero, meaning that the DRS was 

eventually abandoned. The abandonment of DRS occurs when 𝜆𝑆 is 0.5 users/unit of time 

for OD patterns 1 and 2.  This demand level corresponds to the critical mass in DRS.  

4.4.3. Detailed performance of DRS at the near-stationary state 

The detailed performance of DRS at the near-stationary state for the case 𝛽 = 0.8 is 

evaluated. Specifically, the average outcomes of all ridesharing users were calculated as 

a performance indices from view point of users: the relative values of in-vehicle travel 

time 𝛼̅𝑥,𝑘  (Figure 10), travel fare 𝛼̅𝑓,𝑘  (Figure 11), cost of in-vehicle travel time 𝛼̅𝑔,𝑘 

(Figure 12), and the absolute average value of waiting time 𝜏𝑘̅ (Figure 13). Additionally, 

the social cost is evaluated by the VMT (Figure 14). 

According to the results, ridesharing users have shorter detour (Figure 10) from 

OD patterns 1 – 5 because of the higher correlation of trips’ direction. Figure 11 shows 

that ridesharing users in high correlated OD pattern can enjoy more travel fare reduction 

as the trip can be mostly shared with partner (high 𝑏𝑖(𝑗)), and only small detour is 

required (low 𝑎1,𝑖(𝑗), 𝑎2,𝑖(𝑗)). Corresponding to Equation (14), the higher duration of 

riding with partner 𝑏𝑖(𝑗), the higher cost of in-vehicle travel time is (Figure 12). When 



ridesharing users perceive that they can reduce big amount of fare by ridesharing with a 

partner who has very similar itinerary, ridesharing users tend to spend longer time to find 

that desirable partner (Figure 13). That desirable partner can be found faster when travel 

demand is increased. In term of social cost, the total VMT are always reduced by DRS 

(solid lines in Figure 14) comparing to the cases without DRS (dashed lines). The larger 

the demand rate or the longer the travel distance, the larger the reduction in total VTM is. 

4.4.4. Ridesharing user’s spatial characteristic at the near-stationary state 

Figure 15 shows stacked distribution of users according to their regular travel distance 

categorised by travel modes: ridesharing (red) and riding alone (blue). The results show 

that travellers who have long travel distance tend to rideshare. This could be because they 

can be highly advantaged by travel fare reduction from ridesharing. This conforms the 

results of larger number of ridesharing users in OD pattern with higher average travel 

distance and similarity of itinerary in Figure 9. 

4.5. Discussion 

According to the results, we observed the emergence of important behaviours in DRS 

because of individual traveller’s rational decision making. For example, critical masses 

of travel demand rate to sustainably operate DRS were found (Figure 9). The size of 

critical mass strongly depends on spatial distribution of OD demand. Additionally, the 

users’ learning behaviour was observed to have significant effects on the service level of 

DRS (Figures 7 and 8). It suggests the need in the investigation of optimal collective 

information provision for each area and the awareness of the collective information 

propagation as users’ learning behaviour can hardly be controlled in practice.  

Moreover, we confirmed that the proposed DRS model showed reasonable 

behaviours that are qualitatively consistent with the common knowledge in the literature. 

It implies that the proposed model could be useful to quantify these behaviours through 

simulation-based case studies. For example, DRS tends to be utilized if demand level was 

high and OD pattern was correlated (Figure 9), reduction in total VMT by DRS increases 

as demand level increases (Figure 14), a traveller with long travel distance tends to use 

DRS (Figure 15).   

5. Conclusion 

This study investigated how dynamic ridesharing system (DRS) evolves in the long term 



under the rational travel mode and ridesharing partner choices behaviour of travellers. A 

model of behaviour-based DRS was formulated to present the interrelationship between 

users’ decisions in within-day model and their learning process in day-to-day model. The 

users’ rational behaviours on travel mode and ridesharing partner choices decisions were 

formulated under the expected utility maximisation concept. The quantitative 

characteristics of the proposed model were analysed through the numerical experiments 

to obtain the meaningful insights of DRS.  

From the numerical experiments, the effects of learning behaviour and social 

factors to the DRS’s adoption level and its long-term characteristics were investigated. 

Traveller’s learning and information collection behaviours on DRS’s performance 

showed complex effect to DRS’s evolution. This highlights the importance of such 

factors when implementing the DRS. The existence of critical mass in DRS was also 

confirmed, meaning that there is a minimum required demand to sustainably operate 

DRS; if this requirement isn’t met, DRS will be completely abandoned. The model 

showed reasonable behaviours that are consistent with qualitative common knowledge. 

This implies that the model could be useful to quantify such knowledge. 

One of the future research directions could be extending our developed behaviour-

based DRS by incorporating the system operational models (e.g. vehicle operation, fare 

system) or other control strategies (e.g. DRS encouragement policy) from DRS service 

provider side. Investigating the long-term performance of such extended models using 

the same framework of this study will be considerable as it would provide some useful 

policy implications. Case studies based on real-world data would be considerable as well. 

Finally, the numerically investigated long-term characteristics of DRS also need to be 

analytically proven in future. 
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Appendix: Result of sensitivity analysis of ridesharing-related parameter 

Figure A1 shows the number of ridesharing users at near-stationary state when cost of in-

vehicle travel time for ridesharing for one unit of time 𝜇2 is given between [0.1,0.2]. This 

shows the cost of in-vehicle travel time for ridesharing varying from the case when it is 

assumed equal to that of travelling alone to the case when it is doubled.  



 

 

Figure 1. Individual within-day ridesharing-related decision making process. 

  



 

Figure 2. Process in the formulated behaviour-based DRS model. 

 



 

Figure 3. Conceptual illustration of time-related variables and penalty of excessive 

travel time of user 𝑖. 

 

  



 

Figure 4. Conceptual illustration of in-vehicle travel time variables used in numerical 

experiments. 

 

  



 

Figure 5. Numerical experiments design. 



 

Figure 6. Examples of origins and destinations for five given OD patterns. 

 

  



 

(a) OD pattern 1, 𝜆𝑆 = 1 

 

(b) OD pattern 3, 𝜆𝑆 = 1 

 

 

(c) OD pattern 5, 𝜆𝑆 = 1 



Figure 7. Average number of ridesharing users at the near-stationary state for the different users’ 

learning behaviour.  

 

(a) Evolution of first 50 days 

 

 

(b) Evolution of 1000 days 

Figure 8. Evolution of DRS in term of number of ridesharing users for scenario with OD Pattern 1 

and 𝜆𝑆 = 1. 

  



 

 

(a) 𝛾 = 0.5 and 𝛽 = 1.0 

 

 

 

(b)  𝛾 = 0.5 and 𝛽 = 0.8 

Figure 9. Average number of ridesharing users at the near-stationary state. 

 

 

 

 

 

 

 



 

Figure 10. Average ratio of in-vehicle travel time for ridesharing (𝛼̅𝑥,𝑘) at the near-stationary state 

where 𝛾 = 0.5 and 𝛽 = 0.8. 

  



 

Figure 11. Average ratio of travel fare for ridesharing (𝛼̅𝑓,𝑘) at the near-stationary state where 𝛾 = 0.5 

and 𝛽 = 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 12. Average ratio of cost of in-vehicle travel time for ridesharing (𝛼̅𝑔,𝑘) at the near-stationary 

state where 𝛾 = 0.5 and 𝛽 = 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 13. Average waiting time for ridesharing (𝜏𝑘̅) at the near-stationary state where 𝛾 = 0.5 and 

𝛽 = 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 14. Average total vehicle miles travelled (VMT) at the near-stationary state (solid and dashed 

lines show the VMT of scenarios with and without DRS, respectively) where 𝛾 = 0.5 and 𝛽 = 0.8. 

 

 

 

  



 

Figure 15. Travel mode share of users grouped by user’s regular travel distance at near-stationary 

state of scenarios where 𝜆𝑆 = 3, 𝛾 = 0.5 and 𝛽 = 0.8. 

 

  



 

Figure A1. Average number of ridesharing users at the near-stationary state for the different cost of 

in-vehicle travel time when ridesharing for one unit of time where 𝜆𝑆 = 1. 

 

 


