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Multi-objective linear optimization problem for
strategic planning of shared autonomous vehicle

operation and infrastructure design
Toru Seo, Member, IEEE, and Yasuo Asakura

Abstract—This study proposes a unified optimization frame-
work for strategic planning of shared autonomous vehicle (SAV)
systems that explicitly and endogenously considers their opera-
tional aspects based on macroscopic dynamic traffic assignment.
Specifically, the proposed model optimizes fleet size, road network
design, and parking space allocation of an SAV system with
optimized SAVs’ dynamic routing with passenger pickup/delivery
and ridesharing. It is formulated as a multi-objective optimization
problem that simultaneously minimizes total travel time of trav-
elers, total distance traveled by SAVs, total number of SAVs, and
infrastructure construction cost; thus, both the user-side cost and
the system-side cost are taken into account, and their trade-off
relations can be explicitly investigated. Furthermore, the problem
is formulated as a linear programming problem, making it easy
to solve. By leveraging the linearity, we mathematically derive a
useful property of the problem: introduction of ridesharing can
weakly monotonically and simultaneously decrease the user-side
cost and system-side cost. The proposed model is evaluated by
applying it to actual travel records obtained from New York City
taxi data.

Index Terms—dynamic SAV assignment, ridesharing, fleet size
optimization, network design, parking space allocation

I. INTRODUCTION

SHARED autonomous vehicle (SAV) systems may be an
efficient transportation mode in the future [1], [2]. In an

SAV system, automated vehicles shared by a society may
transport travelers using optimized routes and/or ridesharing
matching. Thus, they may reduce the number of vehicles and
infrastructure requirements (e.g., road width, parking space)
in a city without sacrificing the travelers’ utility.

The design of SAV systems involves solving various types
of problems in various levels. In long-term strategic levels,
fleet sizing [1], [3]–[5], road network design and autonomous
vehicle lane deployment [6], and parking space allocation [7]
need to be solved. These problems are important as their
solution may have strong impact to the entire society.

In short-term operational levels, the vehicle routing problem
with pickup and delivery with time windows (VRPPDTW)
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[8], [9] and dynamic ridesharing matching [9]–[12] need to
be solved. These problems are important as they will allow us
to take full advantage of the capabilities of SAVs.

These strategic and operational problems are essentially
interrelated, although they have usually been solved separately
the literature. It would be favorable if strategic decision
making of SAV systems explicitly and endogenously considers
operational aspects of SAV systems. For example, road net-
work design for a city with SAV systems will be significantly
efficient if it takes SAVs’ ridesharing and driver-less parking
capability into account, because ridesharing can reduce overall
traffic volume, and driver-less parking makes parking slots far
from offices/homes more convenient. A unified optimization
problem that simultaneously solve these strategic and opera-
tional problems would be useful for strategic planning of SAV
systems.

The importance of trade-off relations among performance
indexes of SAV systems has been noted, especially in strategic
levels [13]–[15]. For example, an SAV system could be
designed to minimize either user-side cost (e.g., passenger
travel time), system-side cost (e.g., operational cost), or social-
side cost (e.g., environmental cost); these cases may have com-
pletely different system design and cost allocation [13], [16].1

To determine SAV systems’ operator and operational scheme
that satisfy a society’s political/strategic goals, it would be
necessary to explicitly consider these trade-off relations during
the strategic planning phase of SAV systems. Such trade-off
relations can be explicitly investigated by using the framework
of multi-objective optimization problems (MOOP) [17]; how-
ever, to the authors’ knowledge, application of MOOP to SAV
system modeling is very limited.

This study proposes a unified MOOP framework for strate-
gic planning of SAV systems (e.g., fleet sizing, infrastruc-
ture design/update) that explicitly and endogenously considers
dynamic operational aspects of the systems (e.g., routing
and ridesharing). It jointly optimizes aggregated variables on
the SAV’s dynamic routing with passenger pickup/delivery,
dynamic ridesharing, fleet sizing, road network design, and
parking space allocation. The objective functions of the MOOP
are total travel time of travelers, total distance traveled by

1This issue is related to the type of operators of SAV systems. For example,
an SAV system may be operated by a public sector or a private one. In the
former case, the objective of the operator may be the maximization of the
social welfare (e.g.,the sum of user-side cost, system-side cost, and social-
side cost). In the latter case, the objective may be the profit maximization
(e.g., passenger fee minus system-side cost).
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SAVs, total number of SAVs, and infrastructure construction
cost; thus, both of the user-side cost and the system- or social-
side cost are taken into account. The traffic and passenger
flows in the model is described by a dynamic traffic assignment
(DTA) framework; thus, dynamical aspects of SAV operation
are considered. The problem is formulated as linear program-
ming, making it easy to solve. Furthermore, by leveraging the
linearity of the problem, we mathematically derive a useful
property of the problem: introduction of ridesharing weakly
monotonically decreases the user-side cost and the system-side
cost. These features would be useful for strategic optimization
of SAV operation and infrastructure design.

Note that the proposed problem is not intended to optimize
actual, detailed SAV operation on a particular day because
of its macroscopic nature. Instead, it is intended to serve
as a benchmark of operational performances during strategic
planning phases.

As mentioned, one of the unique features of the proposed
method is that it is computationally efficient to solve. In the
existing studies, the optimization problems of an SAV sys-
tem element were often formulated by using computationally
costly frameworks such as mixed integer programming and
multi agent-based simulation. Recent studies have proposed
methods for efficient optimization of SAV routing, etc. [18]–
[21], but they have not been applied to MOOPs.

II. LITERATURE REVIEW

Application of automated, connected, and/or ridesharing
vehicles to intelligent transportation systems has been exten-
sively studied in the recent literature. For comprehensive and
detailed reviews, readers may refer to [2], [22]–[24].

SAV systems may change operational aspects of transporta-
tion systems (e.g., traffic volume, travel time) first. Then,
the change of operation may influences strategic aspects of
transportation and urban systems (e.g., road network, land
use). Therefore, operational and strategic aspects of SAV
systems are interrelated. In this section, existing studies on
operational and strategic aspects of SAV systems that are
closely related to this study are reviewed, and the originality
of this study is highlighted.

A. Operational aspects of SAV systems

VRPPDTW problems and their extensions for SAV systems
have been extensively studied in the literature. SAV systems
may able to do more efficient routing and passenger pickup
and drop-off because of the automated driving and cooper-
ation among SAVs. One of the most popular approaches is
mixed integer linear programming (MILP) on time-expanded
networks [8], [24], in which passengers and SAVs are dy-
namically matched. Furthermore, ridesharing can be directly
incorporated to the MILP framework [9], [10], [24], [25]. The
objective functions of such MILPs are commonly a system-
wide performance index such as total travel time and vehicle
distance traveled; this implicitly or explicitly assumes that the
SAV systems are operated by a central operator. Decentralized
optimization has also been studied for computational efficiency
or robustness against failures [24].

Vehicle routing problems have been also modeled as a con-
tinuous (i.e, macroscopic) DTA problems, in which vehicles
and travelers are described by continuous variables such as
traffic volume [18], [19]. The advantage of this approach is
that it is much more computationally efficient than MILP-
based models while maintaining accurate representation of
traffic dynamics such as congestion. The disadvantage is that it
may not derive itinerary of individual vehicles and travelers;
however, this limitation is common in most of conventional
traffic assignment problems [26].

Ridesharing problems have been also modeled by using the
matching theory, which describes the matching process by
users’ economical behavior [12], [27], [28]. The advantage
of this approach is that it describes users’ behavior more
appropriate in terms of their profit-seeking attitudes.

Another popular approach is heuristic algorithms based on
microscopic information such as trip requests [1], [11], [15].
Its advantage is that it is computationally efficient and can be
flexibly applied to on-demand services and other complicated
or practical situations.

B. Strategic aspects of SAV systems

In the long-term, SAV systems may influences some impor-
tant factors in entire urban transportation systems. Therefore,
it might be desirable to design SAV systems that would realize
efficient urban transportation systems [2], [23], [29].

The fleet sizing problem is important for SAV systems2.
Because of the efficient routing and ridesharing, the number of
required SAVs to serve a fixed travel demand may be substan-
tially smaller than that of conventional vehicles. To solve this
problem, various approaches have been proposed. First, well-
defined mathematical optimization problems is used to directly
find the minimum fleet size [5], [30]. This approach is often
incorporated with the MILP for VRPPDTW and/or ridesharing
problems. Second, application of the graph theory is utilized
for computational efficiency [3], [4]. Third, microscopic agent-
based simulation is often employed [1] for its flexibility.

The road network design problem is also considerable in
the long-term, because traffic demand changes substantially
due to SAV systems. Especially, the autonomous vehicle lane
deployment problem may be practically important in the near
future, because it only requires relatively minor modification
to the current infrastructure. The most common approach is
application of traffic assignment methods [6], [31] that quan-
tify relation between system performance and road network
design of transportation systems. In this approach, continuous
and static models have been utilized [6], [31].

Parking space allocation may change significantly due to
SAV systems. This is because SAVs can drop off passengers
at their convenient locations (e.g., homes, offices, locations
with usually high land price) and then park at distant location
with low land price, and this phenomenon may change land
use pattern of a city [22]. To solve this problem, approaches

2This may be considered as an operational problem. However, we categorize
this as strategic because its time-scale is substantially longer than other
operational problems such as routing; time-scale for routing problems may
be minutes or less, but that for fleet sizing problems may be months or more.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

similar to that for the road network design problem have
been used, such as continuous traffic assignment [32] and
microscopic agent-based simulation [33]. More macroscopic
approaches based on spatial economics have also been used
[7], [34].

Apart from the above specific problems, trade-off relation
between performance indexes of SAV systems have been
noted. As mentioned in Section I, design of SAV systems may
vary significantly depending on the aim of the systems, and
user-side cost and system-side cost may vary depending on
the design [13]–[15]. However, to the authors’ knowledge,
there are only a few studies that directly investigated this
issue in quantitative approaches. [15] investigated trade-off
relations between operation efficiency and quality of service
by microscopic traffic simulation. [14] also investigated sim-
ilar trade-off relations by using an MILP-based model. [16]
proposed a Bayesian optimization framework integrated with
an agent-based simulation in order to simultaneously solve
the operational and strategic problems while considering the
conflict between public and private sectors.

The MOOP is a powerful and rigorous methodology to
investigate the aforementioned trade-off relations [17]. It de-
rives set of all the Pareto efficient states that simultaneously
optimize various objective functions. However, to the authors’
knowledge, no studies have applied the MOOP to SAV sys-
tems. As a relevant study, [35] formulated an MOOP of
shared electric vehicles in order to investigate trade-off relation
between travel efficiency, charging efficiency, and cost.

C. Originality of this study

Based on the review, the original contribution of this study
can be summarized as follows:
• Strategic decision making of SAV systems with explicit

and endogenous consideration to dynamic operational
aspects.

• A tractable multi-objective optimization for SAV systems.
The primary aim of the proposed model is to help strate-

gic decision making of SAV systems, such as fleet sizing,
road network design, and parking space allocation. Given the
importance of interrelationship between strategic aspects and
operational ones of SAV systems, the model also consid-
ers dynamic operation of SAVs, such as routing, passenger
pickup/drop-off, and ridesharing in a macroscopic manner.

By employing a continuous DTA modeling approach, the
model is formulated as a multi-objective linear optimization
problem that is highly tractable. This tractability can be valu-
able given the fact that general MOOPs can be very difficult to
solve. Furthermore, thanks to the tractability, mathematically
proof on an important feature of the model is rigorously
provided (Section III-E).

III. FORMULATION

A. Overview

The key assumptions employed by the proposed model are
as follows. An SAV is defined as a driver-less vehicle that is
shared by a society and may be used by any traveler in the
society. The behavior of SAV traffic is described using a DTA

model, where each link has traffic capacity and each node has
storage capacity. Ridesharing is defined as an activity where
an SAV carries two or more travelers simultaneously. An
SAV may or may not be used as a ridesharing transportation
mode. A traveler is defined as a person who has a specific
origin, destination, earliest departure time from origin, and
latest arrival time to destination. A time-dependent origin-
destination (OD) matrix, which is aggregation of information
of all travelers, is given.3 A traveler is able to move only if
s/he rides an SAV; otherwise, s/he must wait at a node. The
society or the operator of SAV system determines a system
optimal itinerary (i.e., routes), and all SAVs and travelers
follow it.4 The objective function for the system optimal
may vary depending on the society’s goal or the operator’s
type (e.g., public authority or private company); the proposed
MOOP considers various types of such objective functions
simultaneously.

Based on the above assumptions, we propose an MOOP that
jointly minimizes the
• total travel time of travelers,
• total distance traveled by SAVs,
• total number of SAVs, and
• total infrastructure construction cost,

in an urban area in which the mean of transportation is an
SAV system. The decision variables are such as
• SAV’s routing (including empty vehicles and occupied

vehicles),
• passenger’s assignment,
• total number of SAVs, and
• link capacity and storage capacity of a location.

B. Problem
The basic structure of the problem is as follows. We adopt

the concept of the maximal flow problem with a time-expanded
network [36]. A road network is modeled as a time-expanded
network shown in Fig. 1a, and time-dependent movements of
travelers and SAVs are modeled as flows on the time-expanded
network. Let xtij be the total number of SAVs that travel from
node i to j on time step t (Fig. 1b), and yk,ts,ij be the total
number of travelers with destination s and departure time k
that travel from node i to j on time step t (Fig. 1c). As travelers
need to ride SAVs to travel, the number of moving travelers
on a certain link on a certain time step must be smaller than
or equal to the number of moving SAVs times the passenger
capacity of SAVs on the corresponding link and time step. This
can be expressed as condition

∑
s,k y

k,t
s,ij ≤ ρxtij , where ρ is a

given passenger capacity of an SAV. Similarly, SAV flow must
be smaller than or equal to the link capacity; thus, condition
xtij ≤ µij must be satisfied, where µij is the link capacity.
If SAV flow reaches its capacity (i.e., xtij = µij), then the
remaining SAVs will form a waiting queue on the node (i.e.,
xtii > 0). Furthermore, the conservation law at a node must be
satisfied; the sum of incoming flows to a node must be equal
to that of outgoing flows, as depicted in Figs. 1b and 1c.

3This demand information can also be considered as a hypothetical demand
that aggregates average on-demand request.

4This can be considered as reasonable as the SAV system is the only travel
mode. We will discuss later how this assumption can be relaxed.
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(a) Standard network (left) and time-expanded network for dynamic
flow/congestion representation (right)

(b) SAV flow conservation at node i on time step t in time-expanded network

(c) Traveler flow conservation at node i on time step t in time-expanded
network

Fig. 1: Dynamic traffic assignment using time-expanded net-
work.

Our objective is to find the most efficient yk,ts,ij and xtij and
other decision variables under proper constraints including the
passenger and traffic capacity constraints.

As a result, the proposed social optimal SAV planning
problem is formulated as follows:

[SOSAV] min (T, D, N, C) (1)

subject to∑
ij,s,t,k

tijy
k,t
s,ij = T (2)∑

ij,i 6=j

dijx
t
ij = D (3)∑

i

x00i = N (4)∑
ij

cij(µij − µmin
ij ) +

∑
i

ci(κi − κmin
i ) = C (5)

∑
j

x
t−tji
ji −

∑
j

xtij = 0 ∀i, t ∈ (0, tmax) (6)∑
j

y
k,t−tji
s,ji −

∑
j

yk,ts,ij

+ yk,ts,0i − y
k,t
s,i0 = 0 ∀i, s, k, t ∈ Tk (7)∑

s,k

yk,ts,ij ≤ ρx
t
ij ∀ij, i 6= j, t (8)

xtij ≤ µij ∀ij, i 6= j, t (9)

xtii ≤ κi ∀i, t (10)

yk,ks,0r =Mk
rs ∀rs, k (11)∑

t∈Tk

yk,ts,s0 =
∑
r

Mk
rs ∀s, k (12)

xtij ≥ 0 ∀ij, t (13)

yk,ts,ij ≥ 0 ∀ij, s, k, t ∈ Tk (14)

x00i ≥ 0 ∀i (15)

yk,ts,s0 ≥ 0 ∀s, t, k ∈ Tk (16)

µmin
ij ≤ µij ≤ µmax

ij ∀ij (17)

κmin
i ≤ κi ≤ κmax

i ∀i (18)

where the notation is summarized in Table I.
The meaning of each constraint is as follows. Eq. (2) is the

definition of the total travel time, Eq. (3) is the definition of
the total distance traveled by SAVs, Eq. (4) is the definition of
the total number of SAVs, Eq. (5) is the definition of the total
infrastructure construction cost, Eq. (6) is the conservation of
SAVs at a node, Eq. (7) is the conservation of travelers at a
node, Eq. (8) is the passenger capacity of an SAV, Eq. (9)
is the traffic capacity of a link, Eq. (10) is the queue length
capacity of a node, Eq. (11) is the traveler departure demand
at an origin node, and Eq. (12) is the traveler arrival demand
at a destination node.

The decision variables are xtij (corresponding to VRPPDTW
with ridesharing), yk,ts,ij (VRPPDTW with ridesharing), µij

(link construction or SAV lane deployment problem), κi
(parking space allocation problem) for all i, j, s, k, and t,
N (fleet sizing problem), T , D, and C. Note that all of these
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TABLE I: Mathematical notation

Symbol Meaning
xtij flow of SAVs that start traveling link ij on time step t
yk,ts,ij flow of travelers who start traveling link ij on time step t with origin node s and departure time step k
T total travel time of travelers (including waiting time on nodes)
D total distance traveled by SAVs
N total number of SAVs
C total cost of infrastructure construction
tij free-flow travel time of link ij if i 6= j
tii waiting time at node i for one time step (i.e., equal to the time step width by the definition)
dij length of link ij
cij unit cost of expanding traffic capacity of link ij
ci unit cost of expanding storage capacity of node i
ρ passenger capacity of an SAV
µij traffic capacity of link ij
κi storage capacity of node i
µmax
ij maximum allowable value of µij
κmax
i maximum allowable value of κi
µmin
ij minimum allowable value of µij
κmin
i minimum allowable value of κi
Mk

rs time-dependent demand of travelers with origin r, destination s, and departure time step k
Tk travel time window for travelers with departure time step k
tmax final time step

variables have a linear relationship in the problem. Thus, this is
a linear programming problem. The computational complexity
is polynomial of the number of links and time steps.

The problem can be categorized as a dynamic system opti-
mal assignment that jointly minimizes T , D, N , and C based
on a point-queue DTA model with a limited queue length
(i.e., there may be queue spillback) and vehicle holding at
nodes. These principles are similar to those of Kinematic Wave
(KW) model [37], [38], which is the standard dynamic traffic
flow model in the literature. In fact, it can be considered as a
significant modification of the DTA method with the vehicle
holding technique (which is almost equivalent to KW model
but slightly violates the first-in first-out principle) proposed
by [39] and the DTA-based optimal evacuation problems
proposed by [40] and [41]. In order to construct a proper
time-expanded network, the time discretization width should
be equal to the space discretization width (which is usually
equal to the link length) divided by the free-flow speed divided
by an arbitrary positive integer.

C. Traffic dynamics features

In this subsection, we describe how the proposed model
considers many important elements in dynamical modeling of
SAV systems, namely,
• traffic congestion,
• empty vehicles’ travel and detour due to ridesharing, and
• waiting time of passengers.
Traffic congestion is explicitly considered by the model.

As previously mentioned, the traffic model is equivalent to a
point-queue model with limited queue length, in which each
link has traffic capacity µij , and SAVs that cannot go through
a link need to wait on a node. The waiting SAVs on a node
form a waiting queue with length xtii.

Travel of empty (i.e., passenger-less) vehicles is explicitly
considered by the model. As the model utilizes the conserva-
tion law (6), SAVs do not appear, disappear, or warp during
the operation. Therefore, if a drop-off location for an SAV’s

trip and its next pick-up location were different, the SAV
would need to travel to the pick-up location via the network.
The number of empty vehicles that travel link ij on time
step t can be estimated as xtij −

∑
s,k y

k,t
s,ij/ρ. As one of the

objectives of this problem is minimization of the total distance
traveled D =

∑
ij,i 6=j dijx

t
ij , the model tries to minimize

such trips made by such empty SAVs as much as possible.
This feature will be useful to tackle the important issue on
congestion caused by travel of empty vehicles and parking
space allocation problems, which have been observed in actual
operations of transport network companies [42].

Detours due to ridesharing are also explicitly considered by
the model, owing to the conservation laws (6) and (7). The
mechanism is similar to that of travel of empty vehicles.

The waiting time of passengers is considered by the model.
As SAVs have limited passenger capacity and links have
limited traffic capacity, the number of movable travelers is
always bounded. Travelers who cannot move need to wait on
a node.

The above features are numerically demonstrated in Ap-
pendix A.

D. Solution method

An MOOP is “solved” when its Pareto frontier—a set
of all of the Pareto efficient solutions—is derived [17]. The
definition of a Pareto efficient solution of [SOSAV] is a vector
(T,D,N,C) where any of the objective function values cannot
be decreased without increasing the other(s). As [SOSAV] is a
minimization problem, its Pareto frontier is the lower envelope
of its feasible solution domain (see Fig. 2a). A decision-maker
would select one of the solutions from the Pareto frontier by
considering the society’s policies and trade-off relations among
the objective functions.

The proposed problem can be efficiently solved owing
to its linearity. For example, standard methods such as the
weighted sum method and multi-objective simplex method can
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(a) Pareto frontier (b) Ridesharing always improves the Pareto frontier (Theo-
rem 1)

Fig. 2: Pareto frontier in an MOOP. Note that only the two-dimensional objective domain (T,N) is shown in this figure for
conceptual illustration purpose, although the actual objective domain is four-dimensional (T,D,N,C).

be adopted [17]. This is a notable advantage of the proposed
problem, because general MOOPs tend to be difficult to solve.

In this study, the weighted sum method is employed. The
method approximates a Pareto frontier by iteratively comput-
ing a Pareto efficient solution by solving following single-
objective linear optimization:

[SOSAV-WS] minαTT + αDD + αNN + αCC (19)

subject to Eq. (2)–(18), where each αT , αD, αN , and αC

are given non-negative constants representing the priority of
the corresponding objective function. Because of the linearity
of [SOSAV], it is guaranteed that a solution of [SOSAV-
WS] is always a Pareto efficient solution of [SOSAV], and
all of the Pareto efficient solutions of [SOSAV] are solutions
of [SOSAV-WS] with appropriate α. Thus, a Pareto frontier
of [SOSAV] can be approximated as a set of solutions with
[SOSAV-WS] with different α.

E. Qualitative properties

Problem [SOSAV] has useful policy implication on rideshar-
ing. It is mathematically guaranteed that the optimal values of
the total travel time T , total distance traveled D, number of
SAVs N , and construction cost C of [SOSAV] are simulta-
neously and monotonically non-increasing by increasing the
passenger capacity ρ. Thus, ridesharing in [SOSAV] is always
beneficial to average travelers as well as vehicle operators,
road authorities, and the environment in the proposed model.
This property is stated as a mathematical theorem as follows.

Theorem 1. For all ρ2 > ρ1 > 0 and for all Pareto efficient
solutions in [SOSAV] with ρ = ρ1, there exists more weakly
efficient solutions in [SOSAV] with ρ = ρ2.

Proof. In [SOSAV], parameter ρ appears in Eq. (8) only.
According to Eqs. (8), (13), and (14), the feasible domain
of yk,ts,ij and xtij monotonically expands (i.e., the upperbound
increases weakly monotonically and the lowerbound decreases
weakly monotonically) as ρ increases. Hence, the feasible
domain of T , D, N , and C also monotonically expands as
ρ increases. In other words, [SOSAV] relaxes as ρ increases.
Consequently, given the definition of a Pareto frontier (i.e.,
the lower envelope of a feasible domain) and the fact that

[SOSAV] is a linear minimization problem, the theorem holds
true.

See Fig. 2b for conceptual illustration of this theorem. If
constraint (8) is active, T , D, N , and C can be simultaneously
and monotonically decreased by increasing ρ. Note that the
constraint (8) is very likely to be active under realistic data,
because it represents the passenger capacity constraint.

It is worth noting that, according to Theorem 1, the in-
troduction of ridesharing can reduce the average travel time
of travelers. In the literature, the reduction of vehicle distance
traveled and fleet size is highlighted as a benefit of ridesharing;
however, the travel time of travelers tends to be increased
owing to the detours and waiting time caused by ridesharing.
Theorem 1 implies that the travel time of travelers can also
be reduced by ridesharing if SAVs are properly operated.

F. Limitations

The proposed model has several limitations for the sake of
simplicity and tractability. In this subsection, the limitations
and their implications are discussed. Note that some of the
limitations also exist in many studies in the literature.

The demand in the proposed model is deterministically
known. In the real-world, the demand is unknown or uncertain.
Thus, the model overestimates the efficiency of SAV systems.
In order to overcome this issue, the robust optimization
approach would be considerable.

The model only computes aggregated link flows; therefore,
path flows and travel routes of individual travelers cannot
be identified uniquely. Furthermore, it may be impossible to
decompose the flows into discrete travelers.

Although above two issues are clear limitations of the
proposed model, similar features are often assumed to model
SAVs, automated vehicle operations, or ridesharing services in
the literature [6], [18], [19], [43], [44]. Therefore, the proposed
model could be still useful for designing SAV systems in the
strategic planning phases; as discussed in Section I, this role
is essential for urban transportation planning for example.

The model ignores the time and cost associated with passen-
gers’ getting in/off SAVs. Therefore, the number of passengers
switching SAVs may be too large in the solution. However, as
we will see in Appendix A, the number was actually small.
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Fig. 3: Passenger demand distribution.

Perhaps solutions with too many switching are not efficient
because it would indirectly increase travel time and distance
traveled by SAVs.

SAV systems are assumed to be only available transportation
mode. This is clearly a strong assumption. This can be relaxed
by introducing a travel mode choice model as an upper level
problem of the current model.

As mentioned, the model requires special spatial-temporal
discretization. This is not necessarily exactly applicable to
general networks. Hence, approximation of network structure
or size may be required.

IV. NUMERICAL EXPERIMENT

To investigate the quantitative behaviors of the proposed
model under somewhat realistic conditions, a numerical ex-
periment with actual travel data from New York City (NYC)
was conducted.

A. Scenario

The passenger demand was generated from the NYC taxi
data [45]. The taxi data include the origin zone, destination
zone, departure time from origin, and travel time for each
individual passenger’s trip. The travel records of taxis from
8:00 to 9:00 on 2019-04-01 (Monday) in Manhattan were ex-
tracted. We assumed that these travel records were equivalent
to travel requests by SAV users in this area. Fig. 3 shows the
spatial distribution of passenger demand in the area. The total
number of passengers was 17,998. Then, the travel requests
were aggregated to the time-dependent OD matrix Mk

rs with
a 5 min time discretization width and a 30 min departure time
aggregation width.

Regarding ridesharing, three cases were considered: no-
ridesharing (ρ = 1), two-person ridesharing (ρ = 2), and
five-person ridesharing (ρ = 5).

The road network was generated as follows. Because the
passenger demand data are zone-based (see Fig. 3), we consid-
ered each zone as a node in the network, and each neighboring
zone were connected by a link. The number of nodes was 67.
The free-flow link travel time tij was assumed as 5 min, which
is similar to the trip records for many links. The approximate
land value for each zone was obtained from [46], and the
values of cij and ci were determined as proportional to the
land value. Note that the unit of the land value was artificial
(i.e., not an actual currency) in this study.

The other model parameters were set as follows: µmin =
4, µmax = 40, κmin = 4, κmax = 40, and the maximum
allowable travel time was 30 min.

B. Results

The solution (i.e., Pareto frontier) of [SOSAV] for each ρ
case was obtained by iteratively solving [SOSAV-WS] using
the interior point method implemented by Gurobi [47]. An
instance of [SOSAV-WS] was solved in about 2–4 min using
6 threads of a 3.79 GHz CPU and 3 GB of RAM, which can
be considered as reasonably efficient.

The Pareto frontier of [SOSAV] is a four-dimensional
object, which hard to be illustrated directly on this paper.
Therefore, in what follows, several aspects of the Pareto
frontiers are described in order to understand the features of
the model’s solution.

Pareto frontiers in two-dimensional domains are illustrated
in Fig. 4. In these plots, the relation between two objective
values (i.e., T and one of the others) is shown where the
rest of the objective values are fixed to certain values (i.e.,
D = 60000, N = 3500, C = 100000). According to
the figure, the trade-off relation between the objectives were
clearly found. For example, in the no-ridesharing case (ρ = 1)
in Fig. 4c, if minimization of passenger’s travel time T is
prioritized, the infrastructure cost C will become significantly
high. On the other hand, if minimization of the infrastructure
cost C is prioritized, C can be reduced by half while T will be
increased by 1.5 times. Similar tendencies were also confirmed
in Figs. 4a and 4b. An SAV system planner could choose these
two extreme cases as well as various moderate cases between
them on the Pareto frontier, depending on the political/strategic
goal of the SAV system and society.

By comparing the no-ridesharing cases (ρ = 1) to the two-
person ridesharing cases (ρ = 2) in Fig. 4, the efficiency of
ridesharing, which is theoretically guaranteed by Theorem 1,
was evident. For example, according to Fig. 4c, the total travel
time of passengers T of ρ = 2 cases is almost half of that of
ρ = 1 cases when the same infrastructure cost C is given.
Similarly, C of ρ = 2 cases is less than half (sometimes a
third or fourth) of that of ρ = 1 cases when the same T is
given. Similar tendencies were also confirmed in five-person
ridesharing cases and Figs. 4a and 4b. This demonstrates that
introduction of ridesharing is generally beneficial to various
members of the society in this model.

Ranges of objective values in Pareto efficient solutions are
shown in Fig. 5. According to the figure, the objective values
can take a wide range of values; for example, if one of the
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(a) (T,D) domain where N and C are fixed.

(b) (T,N) domain where D and C are fixed.

(c) (T,C) domain where D and N are fixed.

Fig. 4: Pareto frontiers.

Fig. 5: Ranges of objective values in Pareto efficient solutions
without ridesharing (ρ = 1) or with ridesharing (ρ = 2 or 5).

objectives was prioritized, its value could be half of that
of cases with no priority on the objective. Furthermore, the
introduction of ridesharing can greatly reduce the objective
values. For example, the average number of passenger trips
served by an SAV is an important performance index of SAV
systems. According to the range of N in Fig. 5, the number
was 3.0–6.7 passengers/SAV/h for the no-ridesharing case,
4.4–13 passengers/SAV/h for the two-person ridesharing case,
and 10–30 passengers/SAV/h for the five-person ridesharing
case (the total number of the passengers was 17,998). These
results again confirmed that an SAV system planner needs to
carefully design an SAV system through MOOP.

Figs. 6–8 shows the spatial distributions of the model’s
variables in several Pareto efficient solutions. Each upper
row represents cases without ridesharing (ρ = 1), and each
lower row represents cases with ridesharing (ρ = 2). Each
column represents cases where specific objective function was
prioritized. The “priority on T ” means that the Pareto efficient
solution was obtained by setting αT = 100, αD = 1, αN = 1,
and αC = 1, and so on. For example, the upper right plot
in Fig. 6 represents spatial distribution of SAV flow when
the SAV system was designed with priority on C without
ridesharing (ρ = 1).

Fig. 6 shows the distribution of
∑

t,j x
t
ij where i 6= j, by

which characteristics of SAV flow can be confirmed. When
the minimization of T was prioritized (left column), high
SAV flow would be observed to enable quick transportation
of travelers. This high flow included travel of empty vehicles.
Contrary, when the other objectives were prioritized, the SAV
flow would be significantly reduced. The introduction of
ridesharing (ρ = 2, lower row) also reduced the SAV flow. The
distribution of SAV flow was similar to the demand distribution
in Fig. 3.

Fig. 7 shows the distribution of
∑

t,s,k y
k,t
s,ii, by which

characteristics of passenger’s accumulated waiting time can be
confirmed. When the minimization of T was prioritized, the
waiting time was generally small. Contrary, when the other
objectives were prioritized, the waiting time was increased,
especially where large demand was present. Both of the no-
ridesharing and ridesharing cases have similar waiting time
distributions. This means that ridesharing does not necessarily
decrease passenger’s waiting time; this would be due to the
time required for matching in ridesharing.

Fig. 8 shows the distribution of κi, by which characteristics
of parking space can be confirmed. When minimization of T or
D was prioritized, the parking spaces were maximized almost
everywhere to enable quick response to traveler’s demand or
reduction of empty SAVs’s running. Contrary, when the other
objectives were prioritized, the parking spaces were placed
only in locations with relatively low land value. Note that, in
these two cases, the total parking space was not sufficient to
park all SAVs simultaneously; therefore, many empty SAVs
kept traveling on the road until they were assigned to new
passengers. The introduction of ridesharing slightly reduced
the parking space in all cases.

In Appendix A, traffic dynamics in a toy network are shown
as a complementary analysis. According to the results, we
can conclude that the proposed model properly represented
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Fig. 6: Spatial distribution of SAV flow under various conditions.

Fig. 7: Spatial distribution of passenger waiting time under various conditions.
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Fig. 8: Spatial distribution of parking slots under various conditions.

traffic dynamics (e.g., features mentioned in Section III-C)
with ridesharing.

V. CONCLUSION

A multi-objective linear optimization problem that jointly
optimizes aggregated variables on SAV’s routing and passen-
ger pickup/delivery (e.g, location, duration, and volume of
them), traveler assignment and ridesharing, fleet sizing, road
network design, and parking space allocation is proposed.
Note that the model describes aggregated flow of SAVs and
passengers only. Thus, the results might not be directly useful
for operational decision making of SAV systems; instead,
they can be useful for strategic decision making. It seeks to
minimize various types of cost associated to each member of
society, namely, total travel time of passengers, total distance
traveled by SAVs, total number of SAVs, and infrastructure
cost. Therefore, planners of SAV systems can select the
best solution that reflects the society’s political/strategic goal
from a solution set obtained from the proposed problem. The
proposed model is based on a DTA model (i.e., networked
point queue models with limited queue length); thus, it ex-
plicitly considers dynamical features of SAV systems such as
congestion propagation, empty vehicle routing, and passenger
waiting time.

Mathematical analysis reveals that introduction of rideshar-
ing simultaneously and weakly monotonically increases the
utilities of average travelers, operators, and society in the
proposed model. This feature as well as the mathematical

tractability of the problem would be useful as a benchmark
for SAV planning.

Numerical examples are presented to show quantitative
behaviors of the model based on NYC taxi data. The results
suggest that the proposed model behaves reasonably. It is
noteworthy that features (i.e., SAV assignment, infrastructure
design, operational performance) of a Pareto efficient solution
could be completely different from those of other Pareto effi-
cient solutions. This result implies that SAV systems need be
carefully planned to ensure that the society’s political/strategic
goal is achieved; MOOPs such as the proposed problem would
be useful for such a purpose.

The most important future work is to consider other travel
modes such as public transit and private modes. This is
because one of the assumptions of the current model (i.e., the
SAV system is the only available travel mode) is somewhat
restrictive. This extension can be achieved by introducing a
travel mode choice model as an upper level problem of the
current model.

APPENDIX A
NUMERICAL EXAMPLE IN A HYPOTHETICAL

ONE-DIMENSIONAL CITY

In this appendix, the results of a small-scale experiment are
described in order to illustrate detailed traffic dynamics in the
model.
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A. Scenario

Commuting traffic in a hypothetical one-dimensional city
was generated. The number of nodes was 10, and the total
number of travelers was 1000. Most of the travelers’ origins
were on the “left-side” of the city, and their destinations were
on the “right-side”. In these settings, traffic flow dynamics is
easy to illustrate owing to its one-dimensional structure.

B. Results

The space–time diagrams of the travelers and SAV flows in
some of the Pareto efficient solutions are shown in Fig. 9,
which depicts the traffic dynamics in detail. In the figure,
scenarios with and without ridesharing (ρ = 1 or 2) were
solved and illustrated. In both scenarios, commuters were
assumed to tend to travel from left to right following the same
given OD distribution. In Fig. 9a, SAV flows on many links
were saturated (i.e., the red colored flow in the right plot); thus,
travelers needed to wait for long time at their origin nodes
(i.e., thick vertical lines in the left plot). On the other hand, in
Fig. 9b, the SAV flow was almost uncongested, and efficient
traffic was realized because of ridesharing. This suggests that
the proposed model properly represented traffic dynamics with
ridesharing.

In the passenger space–time diagrams, most of the passen-
gers traveled in straight lines and experienced no or few stops
in the middle of travel. This implies that the passengers tend
not to switch SAVs too often.

The Pareto frontiers of [SOSAV] with different ρ values are
shown in Fig. 10. Similar to Fig. 4, we can easily confirm a
trade-off relation between T and N and the positive effect of
ridesharing. Furthermore, a scenario with fully private vehicles
(i.e., no SAVs, no ridesharing), which was not mathematically
feasible in the NYC case study, is also shown as a reference
point. Compared with the fully private vehicles case, SAVs
always reduced N ; furthermore, ridesharing could reduce T .
These can be considered as reasonable and desirable features
of the SAV systems.
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