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1 INTRODUCTION

Shared autonomous vehicle (SAV) systems can be an efficient transportation mode in the future (Fagnant and
Kockelman, 2015). In an SAV system, autonomous vehicles shared by the society will transport travelers by using
optimized routes and/or ridesharing matching. Thus, it will decrease number of vehicles and parking lots in a city
without sacrificing travelers utility.

Design of SAV systems involve various types of problems. The notable examples are vehicle routing problem with
pickup and delivery with time windows (VRPPDTW) (Mahmoudi and Zhou, 2016; Aiko et al., 2017), dynamic
ridesharing matching (Regue et al., 2016; Aiko et al., 2017; Thaithatkul et al., 2019), fleet size optimization
(Vazifeh et al., 2018), road network design and autonomous vehicle lane deployment (Chen et al., 2016), and
parking space allocation. In the previous studies, these problems were often solved separately. Furthermore, they
were often formulated by using computationally costly frameworks such as mixed integer programming.

This study proposes a unified optimization problem for aggregated versions of VRPPDTW, dynamic ridesharing
matching, fleet size optimization, road network design, and parking space allocation of SAV systems based on
dynamic traffic assignment (DTA). The proposed problem is formulated as linear programming, making it very
easy to solve. Meanwhile, it approximates vehicles and travelers as continuum flow. These features will be useful
for strategic optimization of SAV operation and infrastructure design.

2 FORMULATION

The proposed problem is based on the maximal flow problem with a time-expanded network. Specifically, a road
network is modeled as a time-expanded network shown in Fig. 1. Then, vehicles and passenger flows, link capacity,
and node capacity in the expanded network are optimized under given time-dependent origin-destination (OD)
matrix of passengers.

The basic idea of the problem is as follows. Let xtij be the total number of SAVs that travel from node i to j at
time step t. Let yk,ts,ij be the total number of travelers with certain properties (destination s, departure time k) that
travel from node i to j at time step t. Since travelers need to ride SAVs to travel, condition

∑
s,k y

k,t
s,ij ≤ ρxtij

must be satisfied, where ρ is a given passenger capacity of a SAV. Furthermore, xtij must be smaller than the
link capacity. Our objective is to find the most efficient yk,ts,ij and xtij and other decision variables under proper
constraints including the passenger capacity and the link capacity.
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Figure 1: Left: standard network. Right: time-expanded network for dynamic traffic assignment

The problem is formulated follows:

minN + α
∑
ij,s,t,k

yk,ts,ij + β
∑
ij,i6=j

xtij (1)

such that ∑
j

xt−1
ji −

∑
j

xtij = 0 ∀i, t ∈ (0, tmax) (meaning: vehicle conservation) (2)
∑
j

yk,t−1
s,ji −

∑
j

yk,ts,ij + yk,ts,0i − y
k,t
s,i0 = 0 ∀i, s, k, t ∈ Tk (passenger conservation) (3)

∑
s,k

yk,ts,ij ≤ ρx
t
ij ∀ij, i 6= j, t (passenger capacity of SAV) (4)

xtij ≤ µij ∀ij, i 6= j, t (traffic capacity of link) (5)
xtii ≤ κi ∀i, t (parking capacity of node) (6)∑

i

x00i ≤ N (fleet size) (7)

yk,ks,0r =Mk
rs ∀rs, k (passenger departure) (8)∑

t∈[k,k+dmax]

yk,ts,s0 =
∑
r

Mk
rs ∀s, k (passenger arrival) (9)

∑
ij

cijµij +
∑
i

ciκi ≤ C (construction budget) (10)

and some technical constraints such as non-negative constraints (omitted due to the space limitation), where µij
denotes the traffic capacity of link ij, κi denotes the parking capacity of node i, N denotes the total number of
SAVs,Mk

rs denotes the time-dependent OD matrix, dmax denotes the maximum allowable delay for travelers, tmax

denotes the final time step, cij denotes the unit cost for traffic capacity expansion of link ij, ci denotes the unit cost
for parking capacity expansion of node i, C denotes the construction budget, α and β denote weight parameters,
and Tk = {t ∈ (0, tmax) ∩ (k, k + dmax]}.

The objective function is a weighted sum of the SAV fleet size, total travel time of passengers, and total distance
traveled by SAVs. Therefore, this problem is a system optimal DTA.

The decision variables are xtij (corresponds to VRPPDTW with ridesharing), yk,ts,ij (VRPPDTW with ridesharing),
N (fleet size problem), µij (link construction or SAV lane deployment problem), and κi (parking space allocation
problem). Notice that these variables are in linear relationship in the problem. Thus, this is linear programming.
The computation time is polynomial to the number of links and time steps.

This problem can be considered as a point queue-based DTA with vehicle queuing on nodes with limited queue
length. The queue size on a node is constrained by (6); xtii can be interpreted as the sum of parking vehicles and
waiting vehicles on curbside. In fact, the problem can be considered as a variant of DTA-based optimal evacuation
problem of Kuwahara et al. (2017). The limitation of this problem is that it only computes aggregated link flows;
therefore, path flows and travel routes of individual travelers cannot be identified uniquely.
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3 NUMERICAL EXAMPLES

Due to the space limitation, only VRPPDTW with ridesharing and fleet size optimization are considered in this
abstract (numerical results on road network optimization and parking space allocation will be presented at the
conference). Thus, the decision variables were limited to N , xtij , and y

k,t
s,ij . Values of other parameters were fixed

to represent a commute in a hypothetical one-dimensional city. The total number of travelers was 1000.

Scenarios with and without ridesharing (ρ = 1 or 2) were solved and illustrated in Fig. 2 as space–time diagrams.
In the both scenarios, commuters were assumed to tend to travel from left to right following the same, given OD
distribution. In Fig. 2a, SAV flows on many links were saturated (i.e., red colored flow in the right plot), and thus
travelers needed to wait for long time at their origin nodes (i.e., thick vertical lines in the left plot). On the other
hand, in Fig. 2b, SAV flow was uncongested and efficient traffic was realized because of ridesharing.

Table 1 shows efficiency of scenarios with fully privately-owned vehicles (this problem is formulated by slightly
modifying the proposed problem), SAVs without ridesharing, and SAVs with ridesharing. According to the table,
total number of vehicles required to serve the demand was greatly reduced by introduction of SAVs or ridesharing,
and total distance traveled by vehicles was reduced by introduction of ridesharing. However, total travel time of
passengers was increased due to detour of SAVs; regardless, the passenger was able to arrive the destination with
acceptable delays as ensured by the arrival time constraint (9).

4 CONCLUDING REMARKS

Linear programming to jointly optimize SAV’s routing and passenger pickup/delivery, passenger assignment and
ridesharing, fleet size, road network design, and parking space allocation is developed based on a DTA framework.
It can quantitatively determine when SAV and ridesharing are efficient from user and system perspectives. In
the future, we will work on extension to multi-objective optimization problems, development of efficient solution
algorithms, multi-modal transportation, passenger pricing, and application to real urban data.
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(a) Scenario without ridesharing (ρ = 1)

(b) Scenario with ridesharing up to two travelers (ρ = 2)

Figure 2: Space–time trajectories of travelers (left) and SAVs (right) in one-dimensional city. Width of each line
represents traffic volume. Horizontal lines in the traveler flow represents waiting traveler at nodes. Red lines
represent saturation flow. Blue numbers represent inflow, and green numbers represent outflow.
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