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Abstract

This dissertation is entitled “Traffic estimation with vehicles observing other vehicles” by

Toru Seo, submitted to the Department of Civil Engineering in partial fulfillment of the

requirements for the degree of Doctor of Engineering at the Tokyo Institute of Technology,

August, 2015. The dissertation supervisor is Professor Yasuo Asakura, Department of

Civil Engineering, Tokyo Institute of Technology. The examiners are Professor Yasuo

Asakura, Professor Tetsuo Yai, Associate Professor Yasunori Muromachi, Associate

Professor Shinya Hanaoka, Associate Professor Daisuke Fukuda (Tokyo Institute of

Technology) and Professor Takamasa Iryo (Kobe University).

This dissertation summarizes methodology of estimating traffic using probe vehicles

which observe other nearby vehicles. It consists of seven chapters.

In chapter 1, the background and objective are summarized. Automobile traffic takes

significant roles in today’s civilization. In order to achieve high efficiency of traffic,

traffic managements are required. The managements require knowledge on current traffic

situation. However, knowing traffic situation in anytime and anywhere is not yet possible

due to theoretical and practical reasons. The aim of this dissertation is to propose

methodology for traffic state estimation that is theoretically and practically applicable for

vast time–space domain. To achieve it, this dissertation formulates and validates traffic

state estimation method utilizing probe vehicle with spacing measurement equipment.

In chapter 2, related studies are reviewed and summarized. It includes traffic flow

theory, traffic data collection methods, traffic state estimation methods and advanced

vehicle technology. Traffic flow theory can be summarized by employing the concept of

cumulative flow. Then current traffic data collection methods and traffic state estimation

methods are reviewed; and their characteristics are described based on the concept of

cumulative flow. As a result, a challenging task remained in traffic engineering filed is

outlined: traffic state estimation methods that can applicable for vast time–space domain

without theoretical discrepancies. Recent developments in advanced vehicle technology

include vehicle automation, by which vehicle can observe other nearby vehicles. Spacing,
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namely, distance from a vehicle’s head to its leading vehicle’s one, is typical information

collected by such automated vehicles. As a result, a possible approach for the traffic state

estimation is pointed out: methods utilizing probe vehicles with spacing measurement

equipment.

In chapters 3 and 4, methodology of estimating traffic state utilizing probe vehicles’

position and spacing information is formulated. An estimation method are formulated

as requiring less exogenous assumptions as possible and consistent with traditional

definition in traffic flow theory. These characteristics enable the methods to be applied

in various situations without theoretical discrepancies. The method’s characteristics,

such as accuracy and precision, are investigated analytically. Then, some well-accepted

assumptions on traffic flow are integrated to the methods in order to improve the

proposed methodology’s reasonability in common traffic situations. One of the method

estimates traffic state based on the concept of cumulative flow by assuming existence of a

conservation law in a link. The other method estimates traffic state by assuming existence

of a conservation law and a fundamental diagram whose parameters are endogenously

estimated from the probe vehicle data.

In chapters 5 and 6, the proposed methodology is empirically validated. The data

for validation are actual probe vehicle data collected via a field experiment conducted

in the real world, as well as synthetic data generated by simulation experiment. A

simulation experiment-based validation can clarify the methods’ characteristics under

idealized situation, while a field experiment-based validation can evaluate the method’s

characteristics under actual traffic environment. As a result, relation among the

estimation methods’ precision and accuracy, time–space resolution, penetration rate of

probe vehicles and assumptions is clarified. Their consistency with analytical results is

confirmed. Therefore, the methods’ applicability in actual traffic environment is shown.

In chapter 7, achievements and future directions are summarized. The achievements

are formulation and validation of methodology of traffic state estimation utilizing

probe vehicle with spacing measurement equipment. The future directions include

sophistication of the methodology, such as further integration of traffic flow theory.
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Chapter 1 Introduction

1.1 Background

Transportation—“a system for carrying people or goods from one place to another using

vehicles, roads, etc.” (Hornby et al., 2010)—is one of the most essential elements in

civilization. Efficiency of a transportation system must be kept as high as possible. A

transportation system consists of

• people who travel within the system based on their decision,

• modes/infrastructures by/on which people travel, and

• information by which people decide,

In general, civil engineers can keep the efficiency high by controlling and regulating

modes/infrastructures based on information, and providing information to people. To

do so, civil engineers have to answer following questions:

• how many people are there and how fast they are?

• how people decide?

In fact, these are not easy questions. The first point can be answered by collecting

information from the transportation system; however, collecting information from the

entire system is not always possible due to technological and financial limitations. The

second point may be more difficult. If complete rational travelers with perfect information

are assumed, it can be answered partially (Sheffi, 1985); however, as mentioned above,

the perfect information condition is not always satisfied (and perhaps people are not

complete rational). Under such circumstances, people’s decision-making should be

modeled theoretically and be validated empirically—this requires information, again. In

short conclusion, information on transportation system is required as

• basis for coding controls, and

1



Chapter 1 Introduction

• input data for controls.

Traffic is a special mode in a transportation system, where automobiles travel through

one-dimensional roads (Daganzo, 1997). In the modern era, automobiles take significant

role in transportation, because of their high flexibility, high speed, low cost and good

capability of carrying. It has the same information problem mentioned in above.

Ironically, mainly due to their high flexibility, automobiles often cause traffic jams and

negative externalities such as time loss, safety issues and environmental issues—user

equilibrium (UE) vs social optimum (SO) problem in traffic network (Wardrop, 1952;

Braess, 1968). To mitigate these externalities, carefully planed and precisely performed

traffic control measures are required. As a consequence, it can be said that traffic data

collection can be one of the most essential elements in civilization. From emergence

of traffic engineering (Greenshields, 1935), several methodologies have been developed

to collect traffic data. Their approaches can be roughly categorized twofold: Eulerian

and Lagrangian sensing. Eulerian sensing, also known as fixed observation, collects

traffic data at fixed-point on a road; the typical examples are road side traffic detectors

and manual counting. They can acquire sufficient traffic data at installed location;

however, spatiotemporally wide ranging data collection is difficult due to their installation

and maintenance cost. Lagrangian sensing, also known as floating, mobile and probe

observation, collects traffic data from a vehicle that moves along the traffic; the typical

examples are Global Positioning System (GPS)-equipped probe vehicles. They can

only acquire position and speed data; however, spatiotemporally wide ranging data

collection is possible due to their nature and low running cost. Still, there are no

feasible methodologies that are capable of collecting sufficient traffic information for

spatiotemporally wide range. This makes difficult to understand and control traffic.

Recently, advanced vehicle technologies (AVT), such as adaptive cruise control,

collision avoidance, and autonomous vehicles, have been developed practically for

the driving safety and efficiency purposes (c.f., National Highway Traffic Safety

Administration, 2013). These systems automate some of the driving functions of vehicles

by recognizing the surrounding environment of a vehicle. Indeed, these technologies

2



Chapter 1 Introduction

are valuable as they improve efficiency of an individual vehicle’s driving; however, it

does not always guarantee optimal improvement at social level, just like the UE vs SO

problem. Meanwhile, they can be more valuable if they are utilized from social-scale

view point. The information collected by them, especially spacing (i.e., vehicle-to-vehicle

distance), is valuable from the point of view of traffic data collection—spacing is closely

related to traffic state as well as vehicle’s decision-making behavior. The information is

impossible to be acquired with conventional data collection methods, such as road side

traffic detectors and GPS-equipped probe vehicles. Therefore, such advanced vehicles are

expected to be utilized as a source of new traffic data and contribute to transportation from

social-scale. Fig 1.1 illustrates traffic data collection approaches; a gray arrow represents

a vehicle trajectory, orange area represents observable area, and a red dot/line represents

observable information.

1.2 Objective

The primal objective of this dissertation is to propose methodology for probe vehicle-

based traffic state estimation (TSE) that can collect sufficient traffic data where probe

vehicles observe their surrounding vehicles with onboard equipments. In particular, this

dissertation proposes methods for estimating the flow, density, and speed based on the

spacing and position information collected by the probe vehicles. This dissertation names

such probe vehicles “probe vehicles with spacing measurement equipment (PVSME)”.

The primal objective is achieved by accomplishing following secondary objectives:

review (chapter 2), formulation (chapters 3 and 4) and validation (chapters 5 and 6). In the

review chapter, background and challenging tasks for this dissertation are clarified. Then,

in the formulation chapters, TSE methods using PVSME are formulated considering the

review results. In the validation chapters, empirical characteristics of the formulated

methods are investigated; and their performance is shown.

Specifically, this dissertation is organized as follows. Chapter 2 reviews existing

studies on related topics to this dissertation, that is, traffic flow theory, traffic data

3
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Space

Space

Time

Fixed sensorFixed sensor

(a) Eulerian sensing (e.g., detectors). Fixed

sensors (orange pillars) collect information

of travelers (gray arrows).

Space

Space

Time

(b) Conventional Lagrangian sensing (e.g.,

GPS-equipped probe vehicles). Some of the

travelers (red arrows) report information of

their own.

Space

Space

Time

(c) Proposed Lagrangian sensing (i.e.,

PVSME). Some of the travelers (red arrows

and orange belts) collect information of

nearby travelers.

Figure 1.1: Transportation system information collection approaches.
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Empirical Validation

Chapter 1
Introduction

Chapter 3
Basis: Method for Estimating Traffic State

Chapter 7
Conclusions

Chapter 4
Integrating Traffic Dynamics into Estimation Methods

Chapter 5
Simulation Experiment-based Validation

Chapter 6
Field Experiment-based Validation

Chapter 2
Literature Review

Figure 1.2: Structure of dissertation.

collection, TSE and advanced vehicle technologies. Chapter 3 formulates the basic

method for estimating traffic state from the assumed probe vehicle data. It is formulated

as much as simple and consistent with traffic flow theory, in order to utilize it as basis

of more advanced methods. In addition, the basic method is analytically investigated

in order to obtain general insight. Then chapter 4 develops more advanced TSE

methods considering other factors in traffic flow theory, especially on those describe

traffic dynamics. Chapters 5 and 6 validate the proposed methods in chapters 3 and 4,

by using simulation experiment datasets and an actual traffic dataset we collected via

a field experiment, receptively. Through the validation, performance of the proposed

methodology is shown empirically. Finally, chapter 7 concludes achievements and future

direction of the proposed methodology. Fig 1.2 illustrates the structure of this dissertation.
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Chapter 2 Literature Review

This chapter reviews existing studies that are related to this dissertation. Section 2.1

summarizes theoretical aspects of traffic flow, from how traffic states are defined to how

traffic dynamics are modeled. Section 2.2 classifies existing TSE methods, as well as

traffic data collection methods, according to approaches, techniques and technologies

employed by them. Finally, section 2.3 reviews recent advancement in the vehicular

technologies from a point of view of traffic and transportation engineering.

2.1 Traffic flow theory

This section briefly*1 reviews how traffic has been theoretically represented and modeled

in existing studies.

In order to simplify discussion, following considers sufficiently long length street with

single lane without vehicle’s overtaking nor merging/diverging sections (i.e., a first-in

first-out (FIFO) condition and a conservation law (CL) is satisfied), unless otherwise

specified. The space coordinate x increases as downstream direction; the time coordinate

t increases as future direction; the vehicle count n increases from leading vehicles to

following vehicles.

2.1.1 Traffic state

A traffic state can be defined as a set of flow q, density k and average speed v, in

macroscopic scale which focuses on aggregated vehicles and does not always distinguish

each vehicles. The flow, also known as flow rate and traffic volume, is a number of

*1See following literatures for the detail on traffic flow theory. Daganzo (1997) provided systematic and

detailed introduction to traffic flow theory. Helbing (2001) summarized comprehensive review on traffic

flow from various perspective. Wageningen-Kessels et al. (2014) described taxonomy of traffic flow models

with excellent artwork.
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Time t

Space x

small density

large density

large flow

small flow

large speed

small speed

(a) Specified definition often utilized in practical situ-

ation

Time t

Space x

large flow, small density, large speed

small flow, large density, small speed

(b) Edie’s generalized definition

Figure 2.1: definition of traffic state.

vehicles that pass per unit time; density is a number of vehicles that exist per unit space;

and the average speed is a mean of instantaneous speeds among vehicles. In practical

situation, point flow in space, space density at a time point and space mean speed are

often utilized; they are shown in Fig 2.1a. Edie (1963) proposed generalized definition of

traffic state; the traffic state in a time–space region A can be defined as follows:

q(A) =
d(A)
|A| , (2.1)

k(A) =
t(A)
|A| , (2.2)

v(A) =
d(A)
t(A)
, (2.3)

where d(A) is the total distance traveled by all of the vehicles in the region A (veh km),

t(A) is the total time spent by all of the vehicles in the region A (veh h), and |A| is the

time–space area of the region A (km h). It is shown in Fig 2.1b. These definition include

specific definitions mentioned before. Note that the relation of q = kv must be satisfied.

They are often utilized for representing macroscopic traffic. Usually, a set of flow, density

and speed with high time–space resolution (e.g., minutes- and meters-scale) is referred to

7
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Figure 2.2: Three-dimensional representation of traffic flow using the cumulative flow

a traffic state.

The concept of a cumulative flow can be introduced to generalize above. A cumulative

flow N(t, x) is defined as a number of vehicles that passed position x by time t. A

cumulative curve or count, which is a cumulative flow at a certain position (i.e., N(t, x =

given)), is well-known for analyzing queues. A continuous cumulative flow Ñ(t, x) shapes

a continuous and smooth “surface” in vehicle–time–space (n–t–x) domain, in which all

the traffic state mentioned above are included (Moskowitz, 1965; Makigami et al., 1971).

For example, a contour line of the same Ñ is a vehicle trajectory X(n, t) and T (n, x), a

slope of Ñ in the t direction is the flow q, and the slope of Ñ in the −x direction is the

density k. Therefore, following equations hold true:

q(t, x) =
∂N(t, x)
∂t

, (2.4)

k(t, x) =
∂N(t, x)
∂x

, (2.5)

v(t, x) =
q(t, x)
k(t, x)

. (2.6)

Fig 2.2 shows an example of a cumulative flow.

In general, a traffic state can be defined as representation of traffic situation in a certain

8
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time–space domain. In microscopic scale, which focuses on disaggregated vehicles and

distinguishes each vehicles, a state of traffic can be defined as position of vehicle n at time

t, that is, X(n, t). Its first order derivative, namely, dX(n, t)/dt = Ẋ(n, t), is instantaneous

speed; and its second order derivative Ẍ(n, t) is acceleration, respectively, of vehicle n at

time t. A spacing of vehicle n, namely, distance to its leading vehicle, is X(n−1, t)−X(n, t).

They are often utilized for modeling vehicle driving behaviors. In fact, they are not often

referred to “traffic state”.

2.1.2 Fundamental diagram

A fundamental diagram (FD), also known as flow–density relation, found by Greenshields

(1935), is a relation among the traffic state (i.e., flow, density and speed) in equilibrium

state*2 (i.e., no vehicles have incentive to change their speed and spacing) at a time–space

point. An FD can be represented as

q(t, x) = Q(k(t, x), t, x), (2.7)

where Q(k, t, x) is the FD function that returns flow where density is k at time t and

position x. Usually (in single-regime model), an FD in a flow–density plane is a convex

curve that has a peak. An FD in a speed–density plane is a weakly monotonic decrease

curve. An equilibrium traffic state is a stationary, that is, all the vehicles have the same

speed and spacing, if the FD in speed–density plane is strongly monotonic decreasing.

Fig 2.3 shows an example of an FD. A traffic state with a density higher than a critical

density kc is considered as congested state; and that lower than or equal to kc is considered

as free-flow state. One of the most widely-used functional form for an FD is triangular

*2It should be noted that, a flow–density plot, namely, scatter plot that drawn with observed traffic state by

traffic detector with fixed time interval, looks like an FD but is not an FD. It is because such flow–density

plot can include non-equilibrium states (e.g., the observation duration includes both free-flow state and

congested state). The wide scatter often found in flow–density plot is mainly because of this issue; if such

non-equilibrium states are removed, an actual data-based flow–density plot will be well-defined bivariately

(Cassidy, 1998; Coifman, 2014). Nevertheless, actual FD may have scatter; it is mentioned in later.
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Figure 2.3: Example of triangular FD in four coordinate systems

function (Newell, 1993a), which simplify an FD as piecewise linear function with two

lines in flow–density plane, as follows:

q =

 uk, 0 ≤ k < kc,

− ukc
κ−kc

k + u
1/kc−1/κ , kc ≤ k ≤ κ,

(2.8)

where qc is maximum flow, kc is critical density, and κ is jam density. For simplicity

purpose, backward wave ukc/(κ − kc) is sometimes noted using w, and u/(1/kc − 1/κ) is

noted using 1/τ. Fig 2.3 illustrates a triangular FD with four coordinate systems, namely,

q–k, k–v, q–v and s–v (they are equivalent). The blue lines represent free-flow state and

the red lines represent congested state.

Although several studies have investigated FDs characteristics from theoretical,

analytical and empirical perspective, there are no complete theory and explanation for
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k

q

qc?

kc? κ?

Figure 2.4: Example of realistic FD.

determining an FD; there are only approximations*3. This is due to that an FD

depends on, ultimately, behavior of drivers whom the traffic consists of. For example,

Fig 2.4 illustrates an FD often found in empirical data (Edie, 1961; Treiterer and Myers,

1974). The scatter in congested area is referred to hysteresis phenomenon, which is a

phenomenon where trajectories of a transition from lower density to higher and that from

higher to lower draw different curves. Its reason is considered to heterogeneity in vehicle’s

driving style for acceleration and deceleration (Newell, 1962; Treiterer and Myers, 1974;

Laval, 2011). The variety in capacity is referred to capacity drop, which is a phenomenon

where capacity decreases when free-flow state turns into congested state. Its reason is

considered to effect from upstream (Edie, 1961), lane-changing (Daganzo, 2002) and

effect of a platoon (Shiomi et al., 2011). Heterogeneity in vehicle length also affects

to above phenomena (Coifman, 2015).

2.1.3 Traffic flow model

Representing and modeling dynamics of traffic is important. The modeling approaches

can be roughly divided by two: microscopic and macroscopic. In microscopic models,

individual vehicle’s behavior is disaggregately and explicitly modeled. On the other hand,

in macroscopic models, vehicles are approximated as continuous fluid; and behavior of

*3By employing an approximated functional form, an FD can be estimated empirically based on

sufficiently high resolution traffic data (e.g., Chiabaut et al., 2009; Qu et al., 2015).
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the fluid is aggregately and explicitly modeled.

(1) Microscopic approach

It is natural that traffic is described from a point of view of a vehicle individually. Car-

following models (Pipes, 1953; Kometani and Sasaki, 1958, 1961; Gazis et al., 1961)

describe one-dimensional (i.e., longitudinal) movement of individual vehicle behavior

by considering interaction among vehicles. In typical car-following models, a vehicle’s

speed are determined by considering distance to the leading vehicle and speed of it; for

example, the car-following model of Kometani and Sasaki (1958) is described as

βẌ(n, t) = Ẋ(n − 1, t − tr) − Ẋ(n, t − tr) (2.9)

where β is constant coefficient, and tr is a reaction time (of vehicle n). Newell (2002)

connected this model and macroscopic traffic flow model, such as capacity, which is

described in later.

Lane-changing models (Gipps, 1986) describe lane-changing (i.e., lateral) movement

of individual vehicle behavior by considering interaction among vehicles. In typical lane-

changing models, a vehicle determines its lane by considering its desired speed, safety

and destination.

Microscopic vehicle behavior (i.e., combination of car-following and lane-changing

behavior) has been modeled by using diverse manners, such as gap acceptance decision

(Ashton, 1971), behavioral models (Gipps, 1981, 1986), game theory (Kita, 1999) and

Markov chained (i.e., dynamic) latent class models (Choudhury and Ben-Akiva, 2013;

Yanagihara et al., 2015); because it should be determined considering a lot of objectives

and constrains that relate with human behavior, vehicle performance and road alignment.

These models are mainly utilized for investigating traffic safety (Kometani and Sasaki,

1958), traffic at merging/diverging section and intersection (Sarvi and Kuwahara, 2007),

capacity drop due to platoon (Shiomi et al., 2011), and effects of introducing new types

of vehicles such as ADAS (Kikuchi et al., 2003; Talebpour and Mahmassani, 2015)—in

other words, where heterogeneity among drivers significantly affects the results and is the
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main interest. Their reproductivity in macroscopic scale is not always guaranteed (is not

always required), mainly due to their too many parameters, difficulty to be calibrated and

mathematical intractability.

(2) Macroscopic approach

From macroscopic point of view, traffic can be approximated as continuous fluid whose

flow, density and speed correspond to the original traffic state.

The Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955;

Richards, 1956), also known as first order traffic flow model and kinematic wave theory,

is the simplest and yet sufficient model that describes traffic dynamics. The LWR model

employs two principles: an FD and a CL. In the LWR model, a traffic state is assumed to

always equilibrates*4. The LWR model can be described as following equations:

q(t, x) = Q(k(t, x), t, x), (2.10)

∂q(t, x)
∂x

+
∂k(t, x)
∂t

= 0, (2.11)

where eq (2.10) represents an FD, eq (2.11) represents a CL, and Q(k, t, x) is a

fundamental diagram at time–space point (t, x).

One of the objectives of studying macroscopic traffic flow models is to determine the

cumulative flow in the time–space area of interest based on given boundary conditions.

Therefore, several numerical computation methods for solving the LWR model have been

proposed. Numerical computation with time–space discretization (i.e., t–x coordinate

system) is a typical approach for solving the LWR model (Daganzo, 1994; Lebacque,

1996). In this approach, the initial condition is the density at a certain time in the road

sections and boundary condition is in/outflow to/from the road sections. Other studies

*4It implies that the vehicle’s speed can change instantaneously. It can be flaw in representing realistic

traffic phenomena, such as hysteresis phenomena and capacity drop. Some studies developed more complex

traffic flow models, such as the second order model (Payne, 1971). However, they may produces some un-

preferable phenomena as traffic (Daganzo, 1995); and their tractability may be low. Other studies addressed

this issue by modifying the LWR model (Leclercq et al., 2011; Srivastava et al., 2015; Delpiano et al., 2015).
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introduced Lagrangian coordinates (i.e., n–t and n–x coordinate system) for solving the

LWR model (Leclercq et al., 2007; Laval and Leclercq, 2013). Lagrangian coordinates

have following advantages and disadvantages: they can explicitly use vehicle trajectories;

however, special treatments are required for dealing non-FIFO situation.

The LWR model can be simplified by assuming that the triangular and constant FD

shown in eq (2.8), which have three variables u, kc and κ (and two auxiliary variables

w and τ for concise notation). With this simplification, solving the LWR model based

on boundary conditions concludes a minimization problem of two quantities that can be

calculated from the boundary cumulative flow, the free-flow speed and the wave speed

(Newell, 1993a,b,c). It is referred as Newell’s simplified kinematic wave model and

Newell’s three detector problem. It can be represented as follows:

N(t, xm) = min
{
N

(
t − xm − xu

u
, xu

)
, N

(
t − xd − xm

w
, xd

)
+ κ(xd − xm)

}
, (2.12)

where xm is a position of a detector whose cumulative flow is to be calculated, xu is a

position of an upstream detector, and xd is a position of a downstream detector. If the first

term in min{·} in eq (2.12) is smaller than or equal to the second one, the traffic between

xu and xm is in free-flow state. Otherwise, it is partially congested and therefore the traffic

between xd and xm is in congested state.

The cell transmission model (CTM; Daganzo, 1994) is a well-known computation

method for the simplified LWR model based on time–space discretization (i.e., the

Godunov scheme; Lebacque, 1996). It is described as follows:

f in
i (t) = min

{
Ni−1(t),

w
u

(lκ − Ni(t))
}
, (2.13a)

Ni(t + ∆t) = Ni(t) + f in
i (t) − f in

i+1(t), (2.13b)

where f in
i (t) is number of vehicles that enter cell i during timestep t, Ni(t) is number of

vehicles in cell i at timestep t (it can be equal to N(t, il)), ∆t is width of a timestep, and

l is length of a cell which must be equal to u∆t in order to avoid numerical errors. Eq

(2.13a) determines flow based on state of cell i and its upstream cell i− 1. If the first term

in min{·} in eq (2.13a) is smaller than or equal to the second one, cell i during timestep
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t is in free-flow state; and all the vehicles move with the free-flow speed. if not, it is in

congested state. Eq (2.13b) represents transmission of vehicles between adjacent cells.

A car-following model that is equivalent to the simplified LWR model was

also proposed (Newell’s simplified car-following model; Newell, 2002; Daganzo,

2006)—obviously, it can be utilized for computing the model from a microscopic point

of view. It can be represented as follows:

X(n, t) =

 X(n − 1, t − τ) − 1
κ
, if n is following n − 1

X(n, t − ∆t) + u∆t, otherwise
(2.14a)

= min
{

X(n − 1, t − τ) − 1
κ
, X(n, t − ∆t) + u∆t

}
. (2.14b)

In eq (2.14a), “n is following n − 1” means that traffic is congested or saturated. As

connection with the microscopic models, it showed that relation 0 ≤ tr ≤ τ must be

satisfied between an FD and car-following models’ reaction time; and tr = τ/2 was

suggested for usual conditions.

The variational theory (Daganzo, 2005a,b) is efficient computation methodology

using the variational method, based on the idea of Newell’s three detectors problem,

with rigorous mathematical proofs. Then above mentioned calculation methods were

generalized for the three coordinate systems including Lagrangian ones (i.e., t–x, n–t and

n–x coordinate systems), by applying the theory of Hamilton–Jacobi partial differential

equations and the idea of the variational theory (Laval and Leclercq, 2013). It can be

summarized as follows:

N-model calculates quantity N at point (t, x):

N(t, x) = min
{

min
y∈B
{N(0, y) + ukct − kc(x − y)}, N

(
t − x

u
, 0

)}
(2.15a)

≃ min
i=−1,0,...,θ

{
N(t − ∆t, x − i∆x) + ∆x

θ − i
θ + 1

}
, (2.15b)

where ∆x = ∆n/κ and ∆t = τ∆n,

T-model calculates quantity T at point (n, x):

T (n, x) = max
{
T (n, 0) +

x
u
, T

(
0, x +

n
κ

)
+ τn

}
(2.16a)
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≃ max{T (n, x − ∆x) + ∆t, T (n − ∆n, x + ∆x) + θ∆t}, (2.16b)

where ∆t = ∆x/u and ∆x = ∆n/κ,

X-model calculates quantity X at point (n, t):

X(n, t) = min
{

min
y∈B

{
X(y, 0) + ut − n − y

kc

}
, X (0, t − τn) − n

κ

}
(2.17a)

≃ min{X(n, t − ∆t) + θ∆x, X(n − ∆n, t − ∆t) − ∆x}, (2.17b)

where ∆n = κ∆x and ∆t = ∆x/w,

where B is a boundary (for initial condition) curve of the area of interest, and θ = u/w

is required to be an integer. In eqs (2.15)–(2.17) sub-equations (a) represent general

solution; and sub-equations (b) represent corresponding discretized solution (i.e., cellular

automata). The Newell’s three detector problem and CTM can be regarded as special

cases of N-model. The variational theory can be regarded as a special N-model that

can efficiently calculate N at arbitrarily (t, x); therefore, it has capability of dealing

vehicle trajectories. The Newell’s simplified car-following model and some of the existing

Lagrangian models can be regarded as special cases of X-model.

More advanced traffic flow models such as that dealing with multi-lane (Daganzo,

2002; Laval and Daganzo, 2006; Zheng, 2014; Shiomi et al., 2015), multi-class (Daganzo,

2002; Wageningen-Kessels et al., 2010), stochastic phenomena (Sumalee et al., 2011) and

capacity drop (Leclercq et al., 2011) have been developed.

2.1.4 Area-wide traffic: Macroscopic fundamental diagram

Recently, the concept of an FD is expanded to an area-wide region that includes

non-stationary states (Geroliminis and Daganzo, 2008); it is referred to macroscopic

fundamental diagram (MFD). An MFD is relation between area-flow and area-density

which are defined using Edie’s generalized definition. It is conjectured that, under “certain

conditions”, following features exist in area-wide traffic:

• area-wide traffic is steady,
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Figure 2.5: Example of well-defined MFD.

• relation between area-flow and area-density is clearly bivariate (except hysteresis

phenomena mentioned by below), namely, a convex curve with a peak just like an

FD,

• hysteresis phenomena exist just like an FD, and

• flow at an area’s perimeter correlates to its area-flow.

It is referred to “well-defined MFD”. These characteristics are expected to enable traffic

control measures that require less information and operation from theoretical and practical

perspectives (Daganzo, 2007; Daganzo et al., 2011, 2012). Fig 2.5 illustrates an example

of well-defined MFD (solid curve) along with an FD (gray dashed curve). The red curve

represents gridlock state, where effect of queue spillover is significant. Note that relation

between the MFD and FD in Fig 2.5 is just a conjecture.

The flaw is that the “certain conditions” for a well-defined MFD are not clarified yet,

although a lot of applications that assumed existence of well-defined MFDs are proposed.

Some of the “certain conditions” were analytically proven, such as homogeneous road
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with signals without in/outflow (Daganzo and Geroliminis, 2008), that with stochastic

(heterogeneous) schematics and controls (Laval et al., 2015) and two link network

with route choice (Leclercq and Geroliminis, 2013; Jin et al., 2013). Other conditions

were empirically guessed, such as some-sort-of-homogeneous network (Geroliminis and

Daganzo, 2008; Geroliminis and Sun, 2011) and one-to-many network under dynamic

user equilibrium (和田・佐津川, 2014). Meanwhile, existence of steady network traffic

and therefore steady area-wide traffic were proven under steady traffic demands, supplies

and route choice principles (Jin, 2015).

2.2 Traffic data collection and traffic state estimation

2.2.1 Definition

As a preparation for reviewing existing studies, definitions of traffic data, traffic data

collection and traffic state estimation in this dissertation and their basic characteristics are

described.

(1) Traffic data

Traffic data are defined as measured cumulative flow in a certain time–space regions with

appropriate origins in this dissertation. If measurement errors were ignored, the definition

can be represented as

D(A) =
{{N(t, x) − N(t0(A), x0(A)) | (t, x) ∈ A} | A ∈ A}

(2.18)

where D(A) is a traffic dataset in time–space regions A, A is a set of time–space points

included in A, N is a global cumulative flow and (t0(A), x0(A)) is a time–space point

representing an origin of A (i.e., reference point for local cumulative flow in A). Note

that A can be closed time–space region, multiple closed region and discrete points. This

definition includes common traffic information such as: vehicle flow counts at a fixed

position, traffic volume at a fixed position in a time interval, a traffic state with a time–

space interval, a vehicle trajectory, and actual travel time between two positions with
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starting time. Fig 2.6 visualizes traffic data on time–space diagram, where red lines/dots

represent measured integer N, red filled areas represent measuring range of A (where Ñ

is measured), red dotted lines represent connection among regions in one A (they cannot

measure N), and dashed lines represent unobserved vehicles. The details on Fig 2.6 will

be described in later.

Traffic data with measurement errors can be represented as

D′(A) =
{{N′(t′, x′) − N′(t′0(A), x′0(A)) |

t′ = t + ε(t)
t,x,A, x′ = x + ε(x)

t,x,A, N′(t, x) = N(t, x) + ε(N)
t,x,A,

t′0(A) = t0(A) + ε(t)
t0,x0,A, x′0(A) = x0(A) + ε(x)

t0,x0,A, (t, x) ∈ A} | A ∈ A}
(2.19)

where 
ε(t)

t,x,A ∼ pt(t, x,A),

ε(x)
t,x,A ∼ px(t, x,A),

ε(N)
t,x,A ∼ pN(t, x,A),

and pt(t, x,A), px(t, x,A) and pN(t, x,A) are probabilistic distributions of measurement

errors on t, x and N, respectively, at (t, x) and A.

Traffic data are required for understating, planning and managing traffic and

transportation systems. In general, the sufficient characteristics of a traffic data collection

method and a TSE method can be described as follows:

1. any two of the traffic state’s variables can be simultaneously acquired,

2. a spatially and/or temporally wide-ranging area can be covered,

3. spatial and/or temporal detailed information can be acquired, and

4. accurate information can be acquired.

Using expressions in eq (2.18), above characteristics can be represented as follows:

1. the following is satisfied:

• A covers multiple N values (i.e., is not a point nor a line with constant N

value), and
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Figure 2.6: Examples of various traffic data.
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• ∂x/∂t at N is available,

2. difference between minimum t (and/or x) and maximum t (and/or x) in all A in A

is large,

3. the following is satisfied:

• A is large region, or

• a distance between regions (or points, lines) in A inA is small,

and

4. values of N inD are correct.

However, these characteristics are difficult to achieve simultaneously because of cost and

technological limitations. Purposes of utilizing data determine what levels of above

characteristics are sufficient. Thus, different data collection and/or TSE methods are

applied to specific purposes based on their feasibility and information required.

(2) Traffic data collection

A traffic data collection method is defined as a method that collects traffic data without

significant assumptions in this dissertation. Assumptions can be regarded as significant

if they cannot be derived from knowledge other than traffic flow theory. A traffic data

collection method can be represented as a method that collectsD′(A) directly. Therefore,

characteristics of a traffic data collection methods depend on definition of collecting range

A, measurement errors pt, px, pN , and operational costs.

(3) Traffic state estimation

Traffic data in unobserved area can be estimated from collected data in observed area—

it is referred to TSE. TSE can be defined as estimation of traffic states at unobserved

area and observed area based on data collected at observed area and, if any, exogenous

assumptions. This can be represented as follows:

D̂(B) = F (D′(A),θ) (2.20)
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where B is a set of time–space regions whose traffic states are estimated, D̂(B) is

estimated traffic data in B, F is a function representing a TSE method, θ is a set of

exogenous parameters, and D′(A) is collected traffic dataset in area A. F and θ can

be regarded as exogenous assumptions for the TSE method. Usually, A ⊂ B is satisfied,

meaning that traffic states in unobserved area are estimated. If D̂(A) = D′(A) is satisfied,

the observed data are considered to be perfect; otherwise, the observed data may be

considered as containing errors and corrected by the TSE method. Operational costs (i.e.,

computational complexity) of TSE methods can be important if their purposes are real

time estimation; otherwise, the costs can be ignored as they are relatively small compared

to that of data collection methods.

(4) Remarks

In order to simplify the discussion of this dissertation, following topics are not discussed

in detail.

• Traffic data collection can be regarded as a special case of TSE. This is because

that data collection procedures require exogenous assumptions to obtain traffic state

from sensors’ raw signal, even for the most straightforward traffic data collection

method (e.g., Coifman et al., 1998). The assumptions are distinguished depending

on their significance in this dissertation; however, it is difficult to be quantified.

• Short-term future traffic prediction. It can be regarded as TSE whose B contains

future. It requires demand prediction in addition to standard procedures of TSE

methods. For this reason, some studies employed statistical or machine learning

approaches which are based on historical data (c.f., Vlahogianni et al., 2014).

• Travel time estimation/prediction. It is studied by numerous studies, since travel

time is important information for road user’s route choice. It can be regarded as a

special case of TSE, because travel time is corresponding to a vehicle trajectory:

actual travel time from x0 to x1 is defined as T (n, x1) − T (n, x0). Meanwhile, it can

be regarded as an application of TSE, since travel time can be estimated/predicted
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based on TSE results. For these reasons, some studies employed approaches similar

to TSE, such as traffic simulation and statistical/machine learning methods (c.f., Oh

et al., 2015; Mori et al., 2015).

• Supplemental information regarding TSE such as a confidence interval is some-

times derived in addition to D̂(B).

2.2.2 Traffic data collection methods

For the efficient collection of traffic data, various methods have been proposed to date.

Especially, recent achievements in information and communications technology (ICT)

have enabled various information to be acquired by a wide variety of data collection

methods.

(1) Eulerian data

Eulerian data are based on t–x coordinate system and collected by sensors fixed in space.

In general, fixed data collection methods can simultaneously acquire all the traffic state

variables at their installed points.

Roadside traffic detectors are a typical equipment used for fixed data collection

method (c.f., Klein et al., 2006). A detector’s sensor detects that whether a vehicle

occupies the detector’s position or not by using electromagnetic effect of a metal-made

vehicle (i.e., inductive loop detector), ultrasonic sensor, etc.; therefore, it can measure

flow and time occupancy directly at sensor’s position. A detector with single sensor (i.e.,

single detector) can derive density and speed by assuming a value of the vehicle length.

A detector that has two sensor with short space interval (i.e., dual detector) can derive

density and speed by assuming steady speed in space between the sensors. Disadvantages

of detectors are operation cost and accuracy. Wide-ranging traffic data collection with

detectors is difficult due to high cost of installing and maintaining detectors. Accuracy

of detector can be low depending on situation—for example, loop detectors often miss or

double-count vehicles and ultrasonic detector’s sensitivity is affected by air temperature.
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This issue requires careful maintenance of detectors and therefore increases the operation

cost.

Image data collected by (video) cameras can also be utilized as fixed data collection

(Hilbert et al., 1980; Coifman et al., 1998), and provide spatially detailed information

near the installed points. Image-based detectors do not require assumptions employed

by the loop/ultrasonic detectors; however, they require well trained/calibrated pattern

recognition machines. An extreme example of utilizing image data is use of aircrafts,

unmanned aerial vehicles (Coifman et al., 2006) and satellites (McCord et al., 2003);

however, they may not be feasible in ordinary civil uses due to their high operating (fuel)

cost per observation duration.

Signal phase information can be regarded as Eulerian traffic data, since cumulative

flow at signal’s location must be constant during its red phases.

In general, using the expression in eq (2.18), the characteristics of Eulerian data can

be represented as follows. Time coverage ofA is large; but space coverage ofA is small.

If the data were disaggregated, A is defined as a line that is parallel with the time axis

or an Eulerian rectangle (i.e., two edges are parallel with the time axis and the other two

edges are parallel with the space axis; c.f., Fig 2.6b) whose space length is shorter than

that of time. Sometimes the data are aggregated due to limitation of data handling ability;

in such cases, A is defined as points on a line that is parallel with the time axis or vertexes

of Eulerian rectangles (c.f., Fig 2.6c). Signal phase information can be represented as a

line whose position is the signal and the time is during red sign (Fig 2.6d), Space interval

between multiple A can be large. Deviations of pt and px are neglectable. Deviation of

pN may or may not be small.

In conclusion, the fixed data collection methods can provide temporally detailed

information at their installed points. However, information that is spatially detailed and

wide-ranging is difficult to be acquired simultaneously; because the observable area of

the methods is limited to the vicinity of the sensors’ installed positions.

24



Chapter 2 Literature Review

(2) Lagrangian data

Lagrangian data are based on n–t or n–x coordinate system and collected by sensors

moving along with vehicles.

A probe vehicle is defined as having an onboard data collection devices that collects

traffic data while the vehicle is in the traffic (Zito et al., 1995; Sanwal and Walrand,

1995; Murakami and Wagner, 1999). Probe vehicle data can be analyzed to acquire

wide-ranging and spatiotemporally detailed information; because they are often driven

by travelers who range over the entire road network. Today, the most common probe

vehicles are the ones equipped with a Global Positioning System (GPS) device to identify

their position and speed. From the GPS-equipped probe vehicle data, we can identify

the probe vehicles’ origins, destinations and routes by overlaid on a road map. Once

these information are identified, the probe vehicle data directly provide the speed in

road sections that the probe vehicles drove. Mobile communication devices have also

been utilized as probes for specific purposes, such as individual tracking (Asakura and

Hato, 2004; Asakura and Iryo, 2007). Usually, probe vehicles consists of ordinary

road users who are using position identification systems for their own purposes, such

as route navigation and fleet management (Liu et al., 2009). Therefore, additional cost

regarding the data collection is relatively low compared with the fixed data collection;

it only requires data transmission and storage costs. In addition, probe vehicles can

collect data while severe disasters such that fixed data collection cannot operate due to

blackouts (Hara and Kuwahara, 2015). Probe vehicle data have become popular with

advances in ICT, and many studies have utilized them. With penetration rate of few

percentage on a highway, they can collect spatiotemporally detailed data compared with

usual traffic detectors (Herrera et al., 2010). However, GPS-equipped probe vehicle data

do not provide the flow and density information, unless otherwise a PR is 100% or putting

strong assumptions such as an FD and a PR. Unfortunately, a 100% PR may be difficult

to be achieved due to privacy issues (Antoniou and Polydoropoulou, 2015).

Wardrop and Charlesworth (1954) proposed other type of probe vehicle, that is, a

25



Chapter 2 Literature Review

moving observer method that estimates the speed and flow of predetermined routes by

using a single probe vehicle. The original method relied on manually counting the number

of vehicles that the probe vehicle overtakes, that overtake the probe vehicle, and that

pass in the opposite direction, along with the journey time of the probe vehicle. Special

equipments such as laser imaging detection and ranging (LIDAR) can automate this

method (Redmill et al., 2011; Coifman and Hall, 2014). However, unfortunately, even

with recent technological advancement, this method of estimating flow may be difficult

to be automated and often miss-counts vehicles using common equipment, such as video

cameras; this may be because of difficulty of using background subtraction against traffic

in other lanes where background also moves*5.

Matching a vehicle (AVI: automatic vehicle (re-)identification) that observed at

multiple fixed sensors is sometimes possible. By using the AVI, not only traffic state

at sensors position but also OD pair, travel route and average travel speed of some of

the vehicles can be acquired. Note that, an AVI system cannot always matches all the

vehicles. For example, electromagnetic signature observed by loop detectors (Coifman,

1998), license numbers and visual features observed by cameras (Asakura et al., 2000;

Sumalee et al., 2012) can be utilized. Fare collection system can match vehicles based on

the user IDs (Ohba et al., 1999;上田ら, 2014).

In general, using the expression in eq (2.18), the characteristics of GPS-equipped

probe vehicle data can be represented as follows. Time and space coverage of A depend

on probe vehicles’ movement. Shape of A is defined as a line that follows probe vehicle’s

trajectory (i.e., N(t, x) = const, (t, x) ∈ A; c.f., Fig 2.6e). In practical, probe vehicle ID

may be removed from the probe vehicle data due to privacy concerns; it can be represented

as Fig 2.6f. In addition, data from multiple probe vehicles are sometimes aggregated

into single average speed datum due to limitation in data handling ability and further

privacy concerns; this aggregated data are no longer considered as traffic data defined in

*5Currently, the idea of the moving observer is employed as analogy for explaining derivation of traffic

flow models (Lighthill and Whitham, 1955) and calculation of them (Daganzo, 2005a,b) apart from its

original motivation.
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this dissertation. Time and space interval between multiple A depend on probe vehicles’

penetration rate (PR). Deviation of pt is neglectable but that in px may be not neglectable.

An error on N is zero if the road is single-lane (i.e., N′(t′, x′) = N′(t′0(A), x′0(A)) is always

satisfied). An AVI can be visualized as Fig 2.6g and the moving observer method can be

visualized as Fig 2.6h.

In conclusion, the probe vehicle data can provide spatiotemporally wide-ranging and

detailed information if the PR is high enough. However, the widely used probe vehicle

data, namely, GPS-equipped ones, cannot acquire quantity-related information, namely,

flow and density.

2.2.3 TSE methods

Following summarizes some of the existing TSE studies. First, direct utilizations of the

traffic flow theory are mentioned. Then, TSE methods considering practical problems,

namely traffic flow theory-based and statistical/machine learning-based method, are

described.

(1) Deterministic theory-based methods

According to the definition of TSE, solving the LWR model based on given ini-

tial/boundary conditions can be TSE. Such TSE methods can be regarded as deterministic

theory-based; because they assume their theories and collected data are perfect and

well-posed. In other words, using expressions in eq (2.20), deterministic theory-based

methods can be represented as follows: F represents a computation method for a traffic

flow model, θ represents the model parameters,D′(A) represents boundary condition for

the model, and B represents area insideA.

Following methods described in section 2.1.3 can be regarded as F of deterministic

theory-based TSE methods, although they did not limit their motives to TSE: Newell’s

simplified kinematic wave model (referred to Newell’s three detector problem; Newell,

1993a,b,c), Eulerian coordinates-based (Godunov scheme) calculation methods of the
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LWR model (Daganzo, 1994; Lebacque, 1996), the variational theory (Daganzo,

2005a,b), and Lagrangian coordinates-based calculation methods of the LWR model

(Newell, 2002; Laval and Leclercq, 2013). θ includes parameters of an FD for above

methods.

Deterministic theory-based TSE methods may have limitations. Theories only

represent abstracted features of actual phenomena, meaning that F and θ do not always

hold true in actual phenomena. Especially in traffic flow theory, attributes of an FD

are uncertain for general traffic, as mentioned in section 2.1.2. Even if the theories

were perfect, following issues remain: F may not be perfect (c.f., numerical errors,

non-closed-form expressions); andD(A) contain measurement errors.

(2) Practical traffic flow theory-based methods

Some TSE methods are based on traffic flow theory as well as collected data and considers

discrepancies between theories and actual traffic data appropriately. Basically, they

introduce procedures that can handle discrepancies between theories and actual traffic

data, by introducing such as stochastic factors (then apply maximum likelihood method)

and residual minimization procedures. In these methods, definitions of terms in eq (2.20)

are varied. Following describes features of existing these TSE methods regarding to their

definitions of D̂(B),D′(A), F and θ.

On D̂(B), namely, variables to be estimated and areas of interest of TSE. Usually,

detailed aggregated data, such as minutes–hundreds meters scale traffic states, are

estimated (e.g., Wang and Papageorgiou, 2005). Disaggregated data are sometimes

estimated (e.g., Yuan et al., 2012). Network-wide TSE methods and area-wide TSE

methods are also developed, such as missing link complementation based on CLs (Castillo

et al., 2013) and area-flow estimation assuming that a well-defined MFD exists (Gayah

and Dixit, 2013).

On D′(A), namely, input data for TSE. Eulerian data are often utilized for the input

data (e.g., Wang and Papageorgiou, 2005). Lagrangian data are also utilized for newer

TSE methods, with recent GPS-equipped probe vehicles’ emergence (e.g., Nanthawichit
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et al., 2003); however, it should be noted that most of them still uses Eulerian data (e.g.,

Nanthawichit et al., 2003; Herrera and Bayen, 2010; Mehran et al., 2012; Yuan et al.,

2012) as boundary conditions. At signalized intersections, signal timing information can

be utilized for input data, since flow at red signal is known to be zero (Ban et al., 2011;

Mehran et al., 2012; Comert, 2013; Hao et al., 2013; Sun and Ban, 2013; Lee et al., 2015;

Wada et al., 2015). If an estimation method is based on Eulerian coordinate system,

aggregated data are utilized (Nanthawichit et al., 2003; Wang and Papageorgiou, 2005;

Herrera and Bayen, 2010). Disaggregated data are also utilized in order to reproduce

detailed traffic phenomena from vehicles trajectories using Lagrangian coordinates (Yuan

et al., 2012; Mehran et al., 2012; Wada et al., 2015). Utilizing disaggregated data may

require special treatment on non-FIFO conditions (e.g., a probe vehicle overtaking other

probe vehicle will violate the coordinate system; Mehran et al., 2012). For example, Yuan

et al. (2012) avoided this issue by reproducing disaggregate data from data aggregated

from raw disaggregated data; Mehran et al. (2012) and Wada et al. (2015) assumed that

overtaking never happens.

On F and θ, namely, methodology of TSE. Basically, the methodology introduces

stochastic factors based on traffic flow theory and then applies maximum likelihood

method or residual minimization procedures to estimate traffic states.

The most typical methodology is Kalman filtering-like techniques (KFT), such as

Kalman filter (Kalman and Bucy, 1961), extended Kalman filter, ensemble Kalman filter,

particle filter, etc. It may be due to their capability to integrate traffic flow theory and fuse

heterogeneous traffic data within a TSE method. General state-space model for KFT can

be represented as follows:

D(Bt) = St(D(Bt−1),Vt), (2.21)

D′(At) = Ht(D(Bt),Wt), (2.22)

where eq (2.21) is a system equation, eq (2.22) is an observation equation, Bt is a part

of B those belong to time t, At is a part of A those belong to time t, St is a system

model, Ht is an observation model, Vt is a system noise, and Wt is an observation
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noise, at time t, respectively. The objective of KFT-based TSE is to estimate D(B)

based on D′(A), St, Ht, Vt and Wt; the estimator is D̂(B). St corresponds to a

traffic flow model; and D′(At), Ht andWt correspond to a data collection method. The

disadvantage are such as numerical errors, computation costs and calibration difficulties

due to linear approximation, numerical differential, Monte Caro simulation and/or ad

hoc parameters. Various combinations of observation and system models have been

investigated by existing studies. They can be summarized as follows: aggregated detector

data and random walks (Gazis and Knapp, 1971), aggregated speed data of probe vehicles,

detector data and second order traffic flow model (Nanthawichit et al., 2003), freeway

detector data and second order traffic flow model (Wang and Papageorgiou, 2005), state

and parameters estimation using detector data and first order traffic flow model (Lint

et al., 2008), state and parameters estimation using detector data and second order traffic

flow model (Wang et al., 2009), various heterogeneous data from detector, probe vehicle

and AVI (van Lint and Hoogendoorn, 2010), aggregated speed data of probe vehicles,

boundary detector data and speed-based traffic flow model (Herrera and Bayen, 2010),

and disaggregated probe vehicle data, boundary detector data and Lagrangian-coordinated

first order traffic flow model (Yuan et al., 2012). van Lint and Hoogendoorn (2010);

El Faouzi et al. (2011) provided reviews including KFT-based TSE methods.

Other methodologies are also employed. For example, the deterministic theory-based

methods were modified into practical TSE methods that can handle discrepancies between

theories and actual traffic data (Muñoz et al., 2003; Sumalee et al., 2011; Mehran et al.,

2012; Laval et al., 2012; Deng et al., 2013; Lei and Zhou, 2014; Wada et al., 2015;

Sun et al., 2015), using maximum likelihood method, residual minimization, etc. Naı̈ve

extrapolation method with less assumption on traffic flow theory is also useful in some

cases (Coifman, 2002).

The concept of an FD (or MFD sometimes) has a significant role in F (as well as St in

KFT) and therefore the TSE method. Most existing TSE methods assume conditions on

an FD (e.g., its functional form and parameters) exogenously*6. However, as mentioned

in section 2.1.2, an FD is a complicated phenomenon that involves various factors and
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cannot be described or predicted completely. Therefore, they usually requires careful

parameter calibration prior to TSE. Furthermore, in principle, this calibration must require

knowledge on traffic states in B—it can be a vicious circle.

(3) Statistical/machine learning-based methods

Statistical methods and machine learning methods are also utilized for TSE. Basically,

they estimate traffic state based on collected current traffic data and some relation (e.g.,

spatial and/or temporal correlation among data) abstracted from stored historical traffic

data. Therefore, F represents a method for abstracting relation or a traffic state calculation

method based on abstracted relation; θ represents parameters of an abstracting method or

abstracted relation. Methods for abstracting the relation are varied. Data required for the

methods are also varied, as long as the statistical methods and machine learning methods

allow, including both of Eulerian data and Lagrangian data.

These methods are often utilized for short-term future prediction; because the

abstracted relation may include changes in demand in short-term future without explicit

traveler behavior model (c.f., Karlaftis and Vlahogianni, 2011; Vlahogianni et al., 2014).

In short-term future prediction, A represents current and past at a certain space; and B

represents future at the same space.

They are also utilized for missing link complement problems (花岡ら, 2013; Kataoka

et al., 2015). For example, probe vehicles cannot always collect data from every links

in a network; therefore, traffic states of such links are required to be estimated. In these

problems,A represents links with probe vehicles at a time; andB represents links without

probe vehicles at the same time.

The shortcoming is that they require long term historical data for abstracting the

relation and assume the relation always holds true. It implies that these methods are valid

only under ordinal conditions; because extraordinary data, in which the ordinal relation

does not hold true, are difficult to be collected*7. In addition, they can be black box and

*6Under special conditions (e.g., detector observes flow and density), the parameters can be estimated

along with traffic states by using special procedures (Lint et al., 2008; Wang et al., 2009; Sun et al., 2015).
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case-specific which sometimes contradict traffic flow theory.

2.3 Advanced vehicle technologies

2.3.1 Overview

Recently, advanced vehicle technologies (AVT) have began spread in the practical uses.

The AVT includes automated vehicles and connected vehicles.

The automated vehicles includes functions, such as adaptive cruise control, collision

avoidance and autonomous vehicles (Bengler et al., 2014). Several technologies for the

automated vehicles have been developed practically for the driving safety and efficiency

purposes (National Highway Traffic Safety Administration, 2013; Diakaki et al., 2015).

To realize automated vehicles, the surrounding environment of a vehicle must be

recognized using on-vehicle equipments with high accuracy and frequency (Rajamani

and Shladover, 2001; Sivaraman and Trivedi, 2013). The typical and essential factor

of the surrounding environment of a vehicle is a spacing, namely, distance between

a vehicle and its leading vehicle. In fact, spacing measuring technology is not very

new development; it have been studied from mid 1990s (Saneyoshi, 1996; Bertozzi and

Broggi, 1998) and achieves high performance even with commercialized equipments.

For example, Saneyoshi (1996), which utilized stereo camera and was commercialized

recently, reported that the precision is within ±0.01 m and ±1 m at distances of 5 m and

100 m, respectively; and the maximum detectable range is 130 m.

The connected vehicles establishes bidirectional information connection among

nearby vehicles (i.e., VANET: vehicular ad hoc network) using on-vehicle equipment

and/or road-based infrastructure (Hartenstein and Laberteaux, 2008). Basically, it

intends to enable efficient information exchange so that driving can be efficient, such

as information provision and cooperative vehicle control combined with the automated

*7The characteristics can be utilized for detecting extraordinary conditions themselves by comparing

predicted traffic state and revealed actual traffic state (成岡ら, 2015).
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technologies.

Effects of AVT for traffic and transportation are investigated and optimistic results

are often obtained, such as improvements on safety and capacity in both of microscopic

and macroscopic scales (Kikuchi et al., 2003; Talebpour and Mahmassani, 2015; Zhang,

2015; Diakaki et al., 2015).

2.3.2 Utilization for TSE-like purposes

Some of the data collected by AVT satisfy the definition of traffic data in this dissertation.

For example, spacing data collected by automated vehicles are represented as traffic data

whose A containing two values of N, namely, the automated vehicle itself and its leading

vehicle. This is the probe vehicle with spacing measurement equipment (PVSME). It can

be visualized as Fig 2.6i.

In fact, several studies investigated utilization of such AVT data to TSE-like purposes.

For example, capacity of road sections can be measured continuously using a vehicle

with spacing measurement equipment (小谷ら, 2003). Image recognition techniques that

measure spacing in order to quantity-related variable estimation were developed (Rabie

et al., 2002; Panmungmee et al., 2012; Yokoi et al., 2013); however, their estimation

outputs as well as estimation methods are not specified. Some studies (Messelodi et al.,

2009; Diaz et al., 2012) called data collected by spacing measurement and visible vehicle

counting functions “extended Floating Car Data (xFCD)”. An estimation method for

occupancy was developed based on statistical relation between the xFCD and detector

data (Wilby et al., 2014). Data from connected vehicles can be utilized for traffic density

estimation with some assumptions (Goodall et al., 2014; Darwish and Bakar, 2015).
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State

This chapter*1 describes the basic method for estimating traffic state from probe vehicle

data including position and spacing. The method estimates the flow, density, and speed

at a predetermined time and space resolution for a corridor that the probe vehicles drive

through. In order to keep it simple and easy to expansion, the method is designed as not

relying on significant exogenous assumptions.

Sections 3.1 and 3.2 describe premises for the estimation method. Section 3.3

formulates traffic state estimators based on the premises. Section 3.4 investigates

analytical characteristics of the estimators by using approximation. Section 3.5 shows

numerical examples of the estimators. Section 3.6 summarizes the chapter and discusses

characteristics of the estimators.

3.1 Assumptions and concepts

The proposed estimation method is for traffic state in a corridor. The corridor is assumed

to be one-way traffic that can include multi-lane, merging, and diverging sections. Edie’s

generalized definitions (Edie, 1963) were employed for the traffic flow variables; these

define the traffic flow variables (i.e., flow, density, and speed) in a time–space region

based on the trajectories of all vehicles in the region and the area of the region. The

definitions indicate generalized forms of the well-known traffic variable definitions, such

as the spot flow rate, space density, and space mean speed.

The probe vehicle data are used as the inputs for the estimation. The data consist of

the following continuously measured variables:

*1This chapter is mainly based on joint research with Dr. Takahiko Kusakabe and Prof. Yasuo Asakura,

published in Transportation Research Part C (Seo et al., 2015a).
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• spacing of the probe vehicle (i.e., space headway between the probe vehicle and its

leading vehicle in the same lane) and

• position of the probe vehicle.

To simplify the situation, the following conditions are assumed:

• The measurements have no error.

• The route that the probe vehicle drives is identified without error.

• The probe vehicles are randomly distributed in the traffic; the probe vehicle

penetration rate (PR) is unknown to analysts.

• The driving behavior of the probe vehicles is the same as that of other vehicles.

The first and second assumptions indicate an error free assumption. The third and fourth

assumptions indicate a random sampling assumption.

The traffic state estimation procedure is described as follows.

Step 1 Time–space region subject to the traffic state estimation is divided into multiple

discrete time–space regions.

Step 2 The traffic flow variables of every time–space region are estimated independently

based on data collected by the probe vehicles in each region.

Fig 3.1 shows a time–space diagram and time–space region, where the horizontally

hatched region A is a discrete time–space region, the thick solid lines are trajectories of

the probe vehicles, the dashed lines are those of non-probe vehicles, the vertically hatched

regions sn are time–space regions between the n-th probe vehicle and its leading vehicle,

and the 5th, 8th and 12th vehicles are probes.

Any rule can be used to divide the time–space region of the traffic flow (step 1). The

simplest rules is employed in this method, where the traffic flow is divided into identical

size of Eulerian rectangles. This is a familiar coordination in today’s traffic flow data,

where fixed-point detectors are installed at a certain time and space resolution or interval.

This coordination can be represented as follows:

A j
i = {(x, t) | xi ≤ x ≤ xi+1, t j ≤ t ≤ t j+1} i ≥ 0, j ≥ 0, (3.1)
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Time t
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Figure 3.1: Time–space region A and probe vehicle data.

xi+1 = xi + ∆x, (3.2)

t j+1 = t j + ∆t, (3.3)

where i and j are non-negative indices for space and time, respectively, (x0, t0) is the

coordinates of a predetermined origin, (xi, t j) is the coordinates of the lower-left corner

of the region A j
i , ∆x is a predetermined space resolution, and ∆t is a predetermined time

resolution. Note that A j
i is simply written as A in the rest of this dissertation for the

purpose of conciseness.

The estimation method of the step 2 is described in the next subsection.

3.2 Collectable data by PVSMEs

The PVSMEs are supposed to collect their position and spacing as mentioned. In this

section, they are defined in mathematical form.

A position is a coordinate in time–space plane. A vehicle trajectory consists of

continuous positions of a vehicle. Trajectory of vehicle m can be defined as X(m, t)
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and T (m, x), where X(m, t) represents position that vehicle m exists at time t and T (m, x)

represents time that vehicle m passes position x. Obviously, these two of the same m

should be equivalent to each other, and following relation holds true: x = X(m,T (m, x)).

A spacing is space distance between a position of a vehicle at a time and that of its

leading vehicle at the same time. Then, a spacing of vehicle m at time t can be defined as

X(l(m, t), t) − X(m, t), where l(m, t) represents a leading vehicle of vehicle m at time t. If

FIFO is satisfied, it can be simplified as X(m − 1, t) − X(m, t).

We define dm(A): distance traveled by vehicle m in region A, tm(A): time spent by

vehicle m in region A, and am(A): total spacing of vehicle m in region A, as follows:

dm(A) = max{X(m, t) | (t, X(m, t)) ∈ A} −min{X(m, t) | (t, X(m, t)) ∈ A}, (3.4)

tm(A) = max{T (m, x) | (T (m, x), x) ∈ A} −min{T (m, x) | (T (m, x), x) ∈ A}, (3.5)

am(A) = {(t, x) ∈ A | X(m, t) < x < X(l(m, t), t)}, (3.6)

If FIFO is satisfied, am(A) can be simplified as

am(A) = {(t, x) ∈ A | X(m, t) < x < X(m − 1, t)}. (3.7)

In practical, data collected by a probe vehicle are discrete, e.g., GPS log with 1 s

time interval. Therefore, to obtain dm(A), tm(A) and am(A), probe vehicle data must be

interpolated somehow. Note that precision of am(A) is significantly affected by quality of

interpolation, while those of dm(A) and tm(A) are not.

3.3 Estimators

The traffic flow variables defined by Edie (1963), namely, the flow q(A), density k(A),

and speed v(A), in a time–space region A are as follows:

q(A) =
d(A)
|A| , (3.8)

k(A) =
t(A)
|A| , (3.9)

v(A) =
d(A)
t(A)
. (3.10)
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These definitions are easily transformed into eqs (3.11)–(3.13) by summing the spacings

and trajectories of each vehicle in the region A:

q(A) =
∑

n∈N(A) dn(A)∑
n∈N(A) |an(A)| , (3.11)

k(A) =
∑

n∈N(A) tn(A)∑
n∈N(A) |an(A)| , (3.12)

v(A) =
∑

n∈N(A) dn(A)∑
n∈N(A) tn(A)

, (3.13)

if
∑

n∈N(A) |an(A)| > 0, where an(A) is a time–space region between vehicle n and its

leading vehicle in the region A (an(A) = A ∩ sn, cross-hatched regions in Fig 3.1), N(A)

is a set of all vehicles in the region A, dn(A) is the distance traveled by vehicle n in the

region A, and tn(A) is the time spent by vehicle n in the region A.

By replacing N(A) in eqs (3.11)–(3.13) with the set of all probe vehicles in region A,

namely, P(A), estimators based on the probe vehicle data can be defined as follows:

q̂(A) =
∑

n∈P(A) dn(A)∑
n∈P(A) |an(A)| , (3.14)

k̂(A) =
∑

n∈P(A) tn(A)∑
n∈P(A) |an(A)| , (3.15)

v̂(A) =
∑

n∈P(A) dn(A)∑
n∈P(A) tn(A)

. (3.16)

These estimators denote the flow, density, and speed of probe vehicles that works informal

moving blockade. Note that eqs (3.14)–(3.16) are exactly the same as eqs (3.11)–(3.13) if

all of the vehicles were the probe vehicles (P(A) = N(A)).

3.4 Analytical characteristics of estimators

It is valuable to investigate characteristics of the estimators in analytical way prior

to applied them to empirical data; because it gives general insights. The estimation

procedures can be described as random process of selecting probe vehicles with a certain

probability. For example, flow estimator (3.14) can be represented as

q̂(A) =
∑

n∈N(A) bndn(A)∑
n∈N(A) bnan(A)

, (3.17)
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bn ∼ B(P), (3.18)

where B(P) is Bernoulli distribution which is equal to 1 with probability P and 0

otherwise, and P is PR of probe vehicle. In general, indices for accuracy (i.e., bias)

and precision are defined as

Bias(q̂(A)) = E
[
q̂(A) − q(A)

]
, (3.19)

RMSE(q̂(A)) =
√

E
[
(q̂(A) − q(A))2]. (3.20)

where Bias(θ̂) is the bias, which is an accuracy index of an estimator θ̂, where RMSE(θ̂) is

the root mean square error, which is a precision index of an estimator θ̂. Unfortunately, eqs

(3.17)–(3.20) are difficult to be expressed in closed form. Therefore, following discusses

the bias and precision by using approximations that hold true in special cases, and Taylor

approximations.

The estimators represented in eqs (3.14) and (3.15) are not unbiased in general. With

third-order Taylor expansion, the bias in the flow and density estimators shown in eqs

(3.14) and (3.15) can be approximated as:

Bias(q̂(A)) ≃ 1
|P(A)|

Var
[
h̄n(A)

]
E
[
h̄n(A)

]3 , (3.21)

Bias(k̂(A)) ≃ 1
|P(A)|

Var
[
s̄n(A)

]
E
[
s̄n(A)

]3 , (3.22)

where h̄n(A) and s̄n(A) are the mean time and space headway, respectively, of vehicle n

in the region A (see section 3.4.1 for their derivation). According to these equations, an

inverse correlation exists between the bias and number of probe vehicles in the region.

Therefore the bias tends to be mitigated as the size of the region is increased (i.e.,

time/space resolution is lowered) or the PR is increased. The bias also correlates to the

variance of all of the vehicles’ mean time/space headway, which depends on the traffic

flow characteristics. There is no bias in the speed estimator.

In a similar way, the precision of the flow and density estimators shown in eqs (3.14)

and (3.15) can be approximated as

RMSE(q̂(A)) ≃ 1

E
[
h̄n(A)

]2

√
Var

[
h̄n(A)

]
|P(A)| , (3.23)
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RMSE(k̂(A)) ≃ 1

E
[
s̄n(A)

]2

√
Var

[
s̄n(A)

]
|P(A)| , (3.24)

(see section 3.4.2 for their derivation). The tendencies in the precision are quite similar

to those in the bias; namely, the precision of the flow increases as the number of probe

vehicles in a region increases and the variance in the mean time headway decreases.

3.4.1 Derivation of the approximated bias

The approximation of |an(A)| ≃ dn(A)h̄n(A) can be appropriate for most situations, such as

when the size of region A is sufficiently larger than the spacing. With this approximation,

the true flow in eq (3.11) can be transformed to

q(A) ≃ E
[
dn(A)

]
E
[
dn(A)h̄n(A)

] . (3.25)

We assumed that dn(A) and h̄n(A) are independent from each other. Therefore,

q(A) ≃ 1
E
[
h̄n(A)

] . (3.26)

In the same way, the flow estimator in eq (3.14) can be transformed to

q̂(A) ≃ 1
EP(A)

[
h̄n(A)

] , (3.27)

where EP(A)
[
θn

]
is the mean of θn for each vehicle in P(A). The expected value of the

estimator is

E
[
q̂(A)

] ≃ E
[

1
EP(A)

[
h̄n(A)

]] . (3.28)

The third-order Taylor expansion of f (X) = 1/X around E
[
X
]

is derived as

1
X
≃ 1

E
[
X
] − 1

E
[
X
]2

(
X − E

[
X
])
+

1

E
[
X
]3

(
X − E

[
X
])2 − 1

E
[
X
]4

(
X − E

[
X
])3
. (3.29)

We can then obtain

E
[

1
EP(A)

[
h̄n(A)

]] ≃ 1
E
[
EP(A)

[
h̄n(A)

]] + Var
[
EP(A)

[
h̄n(A)

]]
E
[
EP(A)

[
h̄n(A)

]]3 , (3.30)
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by taking the expectations and substituting EP(A)
[
h̄n(A)

]
for X. If the probe vehicles

are randomly sampled from all of the vehicles, E
[
EP(A)

[
h̄n(A)

]]
= E

[
h̄n(A)

]
and

Var
[
EP(A)

[
h̄n(A)

]] ≃ Var
[
h̄n(A)

]
/|P(A)| are satisfied. Therefore, eq (3.30) can be

transformed to

E
[

1
EP(A)

[
h̄n(A)

]] ≃ 1
E
[
h̄n(A)

] + 1
|P(A)|

Var
[
h̄n(A)

]
E
[
h̄n(A)

]3 . (3.31)

From eqs (3.26), (3.28), and (3.31), the relation between flow and its estimator can be

approximated as

E
[
q̂(A)

] ≃ q(A) +
1
|P(A)|

Var
[
h̄n(A)

]
E
[
h̄n(A)

]3 . (3.32)

3.4.2 Derivation of the approximated precision

The index for the precision, that is, root mean square error (RMSE), is represented as

follows:

RMSE(q̂(A)) =
√

E
[
(q(A) − q̂(A))2]

≃

√
E

( 1
E
[
h̄n(A)

] − 1
EP(A)

[
h̄n(A)

])2
=

√√
E

 1

E
[
h̄n(A)

]2

 − E
[

2
E
[
h̄n(A)

]
EP(A)

[
h̄n(A)

]] + E

 1

EP(A)
[
h̄n(A)

]2


=

√√
1

E
[
h̄n(A)

]2 −
2

E
[
h̄n(A)

]E
[

1
EP(A)

[
h̄n(A)

]] + E

 1

EP(A)
[
h̄n(A)

]2


≃

√√
1

E
[
h̄n(A)

]2 −
2

E
[
h̄n(A)

]  1
E
[
h̄n(A)

] + 1
|P(A)|

Var
[
h̄n(A)

]
E
[
h̄n(A)

]3

 + E

 1

EP(A)
[
h̄n(A)

]2


=

√√
E

 1

EP(A)
[
h̄n(A)

]2

 − 1

E
[
h̄n(A)

]2 −
2
|P(A)|

Var
[
h̄n(A)

]
E
[
h̄n(A)

]4 . (3.33)

The third-order Taylor expansion of f (X) = 1/X2 around E
[
X
]

is derived as

1
X2 ≃

1

E
[
X
]2 −

2

E
[
X
]3

(
X − E

[
X
])
+

3

E
[
X
]4

(
X − E

[
X
])2 − 4

E
[
X
]5

(
X − E

[
X
])3
. (3.34)
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We can then obtain

E

 1

EP(A)
[
h̄n(A)

]2

 ≃ 1

E
[
EP(A)

[
h̄n(A)

]]2 +
3Var

[
EP(A)

[
h̄n(A)

]]
E
[
EP(A)

[
h̄n(A)

]]4 , (3.35)

by taking the expectations and substituting EP(A)
[
h̄n(A)

]
for X. If the probe vehicles are

randomly sampled from all of the vehicles, this can be transformed to

E

 1

EP(A)
[
h̄n(A)

]2

 ≃ 1

E
[
h̄n(A)

]2 +
3
|P(A)|

Var
[
h̄n(A)

]
E
[
h̄n(A)

]4 . (3.36)

From eqs (3.33) and (3.36), the precision can be approximated as

RMSE(q̂(A)) ≃ 1

E
[
h̄n(A)

]2

√
Var

[
h̄n(A)

]
|P(A)| . (3.37)

3.5 Numerical examples

In order to investigate general behavior of the estimators, and validity of the approxima-

tions for their accuracy/precision, numerical examples on the flow estimator is shown. In

the numerical examples, traffic is assumed to be steady as follows.

Distribution of mean time headway of a vehicle, h̄n(A), is assumed to follow the

Gamma distribution, which is often employed for representing the headway distribution

(c.f., Katakura, 1971; Zhang et al., 2007), with parameters k = kh and θ = θh. Variable

dn(A) is also assumed to follow the Gamma distribution with parameters k = kd and

θ = θd, and is independent of h̄n(A). Note that dn(A) is actually almost independent of

h̄n(A) where A has long time length comparing to the space length and the vehicle speed,

such that all the vehicles in A travel distance of the space length of A.

The probability density function of the Gamma distribution is

f (x) = xk−1 e−x/θ

Γ(k)θk
, (3.38)

where k and θ are parameters of the distribution, and Γ is the Gamma function. The mean

and variance are kθ and kθ2, respectively.

The parameters of the distributions (mean µ(·) and standard deviation σ(·)), the total

number of vehicles N(A), and the number of probe vehicles P(A) are given for numerical
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Table 3.1: Parameters for numerical examples

µ(h̄n(A)) (s) σ(h̄n(A)) (s) µ(dn(A)) (m) σ(dn(A)) (m)

(a) 1.5 0.5 100 5

(b) 3 2 100 5

(c) 3 2 100 20

(d) 8 9 100 20

examples. If the mean of h̄n(A) was large, it means that the flow is low. If the variance

of h̄n(A) was large, it implies that the flow is in free-flow state. If the variance of dn(A)

was large, it implies that the variance of speed is large. If N(A) was large, it implies that

size of A is large, namely, the estimation resolution is low. If P(A) was large compared to

N(A), it means that PR is high.

The parameters of time headway distribution were adopted from field data described

by Katakura (1971), while that of speed were assumed. Three combination of the

distribution parameters values were employed as shown in Table 3.1, where (a) represents

near-saturated state, (b) represents free-flow state, (c) represents free-flow state with larger

speed variance and (d) represents sparse free-flow state. The value of N(A) is either 100

veh or 5000 veh, which represents high and low resolution, respectively. The P(A) is

selected from various values. Note that congested states are not validated in this section,

since mean headway variance in congested states can be significantly smaller than that of

free-flow states so that the estimation accuracy/precision may be high.

Errors defined by eqs (3.17)–(3.20) are numerically computed using Monte Carlo

simulation (i.e., simulated random sampling of bn where dn(A) and an(A) are given for

all n). Then, they are compared with the analytically approximated ones (3.21) and

(3.23). Figs 3.2 and 3.3 show the results. Each subfigure shows relation between errors

and PR under specific state and resolution. Errors include numerical computed bias

and RMSE (blue lines), and analytically approximated ones (red lines). According to

the figure, the numerical computed errors decrease as PR increases, resolution lowers,

and variances in headway and speed lowers. The effect of speed variance is relatively
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(a) Near-saturated state (2400 veh/h) (b) Free-flow state (1200 veh/h)

(c) Free-flow state (1200 veh/h) with larger speed

variance

(d) Sparse free-flow state (450 veh/h)

Figure 3.2: Numerical examples of error of the flow estimator with high resolution.

insignificant. The tendencies of the numerical computed errors are the same to the

analytical approximated ones. In addition, the analytical approximated errors are fairly

close to the numerical computed ones under some conditions, such as in low resolution,

in dense state, for bias, etc. Therefore, they can be valid and useful for predicting the

accuracy/precision of the TSE method in prior to applications under such conditions.

On the other hand, the approximation is not appropriate under high penetration rate or

sparse traffic flow conditions. It may be due to third order Taylor approximation and

approximation Var
[
EP(A)

[
h̄n(A)

]] ≃ Var
[
h̄n(A)

]
/|P(A)|.
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(a) Near-saturated state (2400 veh/h) (b) Free-flow state (1200 veh/h)

(c) Free-flow state (1200 veh/h) with larger speed

variance

(d) Sparse free-flow state (450 veh/h)

Figure 3.3: Numerical examples of error of the flow estimator with low resolution.

3.6 Discussions

With the method we can estimate the flow, density, and speed depending only on probe

vehicle data. This characteristic is valuable for a TSE method because it makes wide-

ranging state estimation easy, as noted in chapter 2. The method does not presume an

FD, which is often used to estimate the traffic state in existing studies (e.g., Nanthawichit

et al., 2003; Yuan et al., 2012; Mehran et al., 2012). Because of this independency from

an FD, the results obtained with this method are robust against unpredictable or uncertain

factors of traffic flow, such as traffic incidents. In addition, the results can be utilized to
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Time t

Space x

(a) Higher resolution

Time t

Space x

(b) Lower resolution

Time t

Space x

(c) Area-wide resolution

Figure 3.4: Examples of A shapes.

estimate or calibrate traffic flow models, including FDs.

The resolution of the estimation (∆t and ∆x) can be adjusted to the requirements by the

planners and analysts. As shown in eqs (3.21)–(3.24) and section 3.5, there is a tradeoff

between the estimation accuracy and precision and resolution, as well as a positive relation

between the accuracy and precision and PR. Therefore, analysts can choose a desired

resolution depending on the estimation purpose and the number of probe vehicles in

order to maintain the required accuracy and precision. Fig 3.4 illustrates examples of

the shapes of A where the dashed lines represent each boundaries of As. If the number

of probe vehicles is sufficiently large, a high resolution can be set—detailed and dynamic

changes in traffic states can be recognized (Fig 3.4a). In contrast, even if the number of

probe vehicles is very small, analysts can still obtain some knowledge on the traffic by

setting a low resolution, such as an hourly traffic volume (Fig 3.4b) and area-flow/density

(Fig 3.4c).

Section 3.5 shows numerical examples of the accuracy/precision depending on

traffic situation, estimation resolution and PR by assuming simple spacing and speed

distributions; and suggested naı̈ve benchmarks on the capability of the proposed method

and validity of the analytically approximated errors. In order to investigate these

characteristics under more realistic traffic situation, in which speed and spacing are
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described by nonlinear traffic phenomena, they are quantitatively analyzed based on data

collected via simulation experiments and a field experiment in chapters 5 and 6

The proposed method relies on assumptions that may not always satisfied in the

real world, namely, the error free and random sampling assumptions. The error free

assumption can be reasonable except in situations with very sparse traffic where leading

vehicles are not often detectable. The reasons are as follows. Small errors in position

measurement*2 do not significantly affect accuracy and precision of the proposed method.

If the size of the time–space region A is larger enough than expected error in position

measurement, errors in dn(A), tn(A) and an(A) can be neglectable. On the other hand,

errors in spacing measurement directly affect an(A) and therefore accuracy and precision

of the proposed method. However, errors in spacing measurement should be small

because practically implemented spacing measurement technologies have to provide good

features in order to guarantee the safety of the ADAS. Although the spacing measurement

requires assumption on vehicle length, this can be only a weak assumption; because

variation of vehicle length is expected to be relatively smaller comparing to that of the

spacing.

Leading vehicles are not always detectable due to technical problems, such as

excessive distance. This “missing spacing” issue always exist, and is more significant at

sparse traffic. This issue may arise over estimation if such data were discarded; therefore,

it cannot be neglected. For example, ratio of missing spacing under traffic condition

described in section 3.5, 80 km/h average speed, and maximum detectable range 130 m

(Saneyoshi, 1996) is calculated as follows: (a) 0.0%, (b) 9.2%, (c) 9.6% and (d) 44.4%.

Therefore, for practical purposes, imputation methods for missing spacing are desirable*3.

The random sampling assumption may not always satisfied in the real world. This

*2Usual GPS-based map-matching techniques’ accuracy is around 10 m (Quddus et al., 2007).
*3The amount of flow over estimation caused by discarding missing spacing data in the example are as

follows: (a) 0.0, (b) 213.6, (c) 226.3 and (d) 1110.1 veh/h—they are far more than neglectable. If the

missing spacing data are simply substituted by the maximum detectable range, flow over estimation can be

mitigated to (a) 0.0, (b) 64.9, (c) 77.6 and (d) 482.9 veh/h.
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means that the probe vehicles may have different driving behaviors compared with other

vehicles. In general, the estimation biases caused by biases in probe vehicles’ driving

behavior can be explained as follows. If average speed of probe vehicles is larger than

that of all the vehicles, the flow and speed will be proportionally overestimated. If average

spacing of probe vehicles is larger than that of all the vehicles, the flow and density will

be proportionally overestimated. Note that the biases are difficult to be specified in prior

due to the nonlinear relation between speed and spacing.
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Chapter 4 Integrating Traffic Dynamics into

Estimation Methods

This chapter*1 describes how the basic method can be integrated with dynamics of

traffic. Traffic is dynamic phenomena that propagates over time and space. If conditions

describing such dynamics were integrated into TSE methods, their accuracy and precision

can be improved while keeping them consistent with traffic flow theory. For example,

the negative effect by local fluctuation in microscopic vehicular traffic, such as vehicle

platoons and lane-changing, can be mitigated. This chapter develops two TSE methods

integrated with traffic dynamics based on the basic method formulated at chapter 3.

Section 4.1 describes some directions of integrating dynamics of traffic into TSE

methods. Sections 4.2 and 4.3 describe TSE methods integrated with a CL and with

both of an FD and a CL, respectively. Both sections consist of the method’s concept,

its formulation and its summary. Finally, section 4.4 provides qualitative comparison

among the three TSE methods, namely, the basic method (chapter 3), the method with CL

(section 4.2) and the method with FD and CL (section 4.3).

4.1 Directions

Basically, traffic dynamics can be described with a fundamental diagram (FD) and a

conservation law (CL) (c.f., the LWR model, chapter 2). An FD represents relation among

flow, density and speed in equilibrium traffic. A CL means that vehicles do not warp,

appear and disappear without specific sinks and sources.

The following develops two TSE methods. One of them utilizes the condition of a

*1This chapter is mainly based on joint research with Dr. Takahiko Kusakabe and Prof. Yasuo Asakura,

published in Journal of JSCE (瀬尾ら, 2013), ISTTT21, Transportation Research Part C (Seo and Kusakabe,

2015, in press) and IEEE ITSC 2015 (Seo et al., 2015b, accepted).
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CL where a CL must be satisfied (i.e., road sections that do not have merging/diverging

sections). The other utilizes the conditions of an FD and a CL; a functional form of an FD

is given exogenously while its parameters are endogenously estimated from probe vehicle

data. Note that methods with an FD but without a CL is not considered here; because it is

theoretically pointless for TSE purposes in a corridor*2.

4.2 Method with CL

This section develops a method that estimates the traffic state based on the collected

spacing and position data of probe vehicles by considering a CL to represent the traffic

dynamics. On the other hand, it does not use an FD in order to eliminate exogenous

factors.

4.2.1 Concept

The proposed method estimates traffic states in a road section where some of the vehicles

in the flow are probes that measure the geographic position and spacing of the vehicle

ahead without any errors. The road section’s schematics are assumed to be known to

analysts. The probe vehicles’ driving behavior is assumed to be the same as that of non-

probe vehicles, i.e., the probes are randomly sampled from all of the vehicles. In addition,

the traffic flow is assumed to be single-lane traffic that satisfies the FIFO condition in order

to simplify the situation.

The spacing observed by a vehicle at a point depends on microscopic vehicular

phenomena that depend on macroscopic traffic flow phenomena. For example, the spacing

of a vehicle takes a volatile value that is mainly determined by whether the vehicle or not

is the leader of a platoon; meanwhile, the development of the platoon is determined by the

global traffic state. Therefore, aggregation is needed in order to estimate the traffic state

from the observed vehicular variables. In this method, the observed vehicular variables

*2Methods with an FD without a CL may be interesting in terms of area-wide traffic state estimation,

namely, methods with MFD.
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are aggregated based on the CL. Specifically, the number of vehicles between two specific

probe vehicles is a constant along a section where flow discontinuity points (e.g., a node

in a road network) do not exist. This number of vehicles is estimated by aggregating

the data observed by the two boundary probe vehicles. The estimation procedure is as

follows:

Step 1 The number of vehicles between two consecutive probe vehicles and two

consecutive discontinuity points is estimated based on the observed data of the two

probe vehicles.

Step 2 The cumulative flow at the probe vehicle trajectories is calculated from the

estimated number of vehicles.

Step 3 The continuous cumulative flow over the entire time–space region is estimated by

interpolating the cumulative flow at the probe vehicle trajectories.

Step 4 The traffic state (i.e., flow, density and speed) is derived by partially differentiating

the continuous cumulative flow.

Fig 4.1 visualizes the relation among the cumulative flow, vehicle trajectory, and traffic

state (for details, see Makigami et al., 1971); the height is the continuous cumulative flow

Ñ, the contour line of Ñ is a vehicle’s trajectory, the slope of Ñ in the t direction (∂Ñ/∂t)

is the flow q, and the slope of Ñ in the −x direction (−∂Ñ/∂x) is the density k. This

method can be regarded as based on rectangles on the n–x coordinate plane, which is

similar to the n–t Lagrangian coordinates of Leclercq et al. (2007); Wageningen-Kessels

et al. (2013) and is identical to coordinates of T-model by Laval and Leclercq (2013),

because the primary subject of estimation is the number of vehicles in the n–x rectangles.

4.2.2 Estimation method for cumulative flow at probe vehicle’s

trajectory

Consider the time–space region A j
m (c.f., Fig 4.2) surrounded by the

• trajectory of the m-th probe vehicle,
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Figure 4.1: Three-dimensional representation of traffic flow.

Time t

Space x

j-th discontinuity point, x j

( j + 1)-th discontinuity point, x j+1

probe m − 1 probe m

region A j
m

number of vehicles |N(A j
m)| − 2

region am−1(A j
m)

region am(A j
m)

Figure 4.2: Method conceptualized as time–space diagram.

• trajectory of the leading vehicle of the (m − 1)-th probe vehicle,

• position of the j-th discontinuity point, and

• position of the ( j + 1)-th discontinuity point.

Because of this definition and the FIFO assumption, the number of vehicles in the region

A j
m is always identical to the number of vehicles between the m-th probe vehicle and the

leading vehicle of the (m − 1)-th probe vehicle. The following notations are employed to
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represent the time and space coordinates: xt
m is the position of the m-th probe vehicle at

the time point t, tx
m is the time point of the m-th probe vehicle at the position x, and x j is

the position of the j-th discontinuity point.

The cumulative flow N(t, x) at a probe vehicle’s trajectory—with the 0th probe

vehicle*3 as a reference point—is described by using the number of vehicles between

two probe vehicles as follows:

N(tx
0, x) = 0, (4.1a)

N(tx
m, x) = N(tx

m−1, x) + |N(A j
m)| − 2 (m ≥ 1, x j < x < x j+1), (4.1b)

where N(A) is the set of all vehicles in the time–space region A and |N(A)| is the number

of vehicles of N(A). Eq (4.1) means that the number of vehicles between the m-th and

(m − 1)-th probe vehicles at the position x (i.e., N(tx
m, x) − N(tx

m−1, x)) is identical to the

number of vehicles in the region N(A j
m) minus two*4 (i.e., |N(A j

m)| − 2) if the position x is

between the j-th and ( j + 1)-th discontinuity points.

The only unknown variable in eq (4.1) is N(A j
m). This can be estimated from the probe

vehicle data as follows:

|N̂(A j
m)| = |A j

m|(
|am−1(A j

m)| + |am(A j
m)|

)
/2
, (4.2)

where am(A) is the time–space region between the m-th probe vehicle and its leading

vehicle in region A, which should be observed by the probe vehicle, and |A| is the area

of the region A. Eq (4.2) means that all vehicles in time–space region A j
m are distributed

with a time–space interval of (|am−1(A j
m)| + |am(A j

m)|)/2, which is the average of the two

probe vehicle’s intervals. This is consistent with the generalized definitions of Edie

(1963). It also implies that the number of vehicles between two vehicles is determined

by the two vehicles’ spacing at a road section without discontinuity points. By using the

estimated value, the cumulative flow at a probe vehicle’s trajectory (4.1) can be calculated

as follows:

N̂(tx
0, x) = 0, (4.3a)

*3This vehicle is to be specified by an analyst
*4the (m − 1)-th probe vehicle and its leading vehicle
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N̂(tx
m, x) = N̂(tx

m−1, x) + |N̂(A j
m)| − 2 (m ≥ 1, x j < x < x j+1). (4.3b)

4.2.3 Estimation method for traffic state

The flow, which is defined as q = ∂Ñ/∂t, can be estimated as

q̂(t, x) =
N̂(tx

m, x) − N̂(tx
m−1, x)

tx
m − tx

m−1
(tx

m−1 < t ≤ tx
m). (4.4)

The continuous cumulative flow Ñ is estimated from

ˆ̃N(t, x) =
∫ t

tx
0

q̂(τ, x)dτ. (4.5)

In fact, eqs (4.4) and (4.5) mean that ˆ̃N is linearly interpolated from the discrete N̂ of eq

(4.3) over the t-axis (Fig 4.3a) where uniform distribution of the vehicles between tx
m and

tx
m−1 is assumed.

Once the continuous cumulative flow is obtained, the density and speed can be

estimated as

k̂(t, x) = −∂
ˆ̃N(t, x)
∂x

, (4.6)

v̂(t, x) =
q̂(t, x)

k̂(t, x)
, (4.7)

based on their definitions, namely, k = −∂Ñ/∂x and v = q/k, except at the discontinuity

points.

The estimation procedure can also be visualized as Fig 4.3. First, the number of

vehicles between two convective probe vehicles |N̂(A j
m)| − 2 is estimated based on the

observed data from probe vehicles. Then, the cumulative flow N̂(tx
m−1, x), N̂(tx

m, x) and

continuous cumulative flow ˆ̃N(t, x) are estimated along with the cumulative flow’s slope

on the n–t plane, which means the flow q̂(x, t) between tx
m−1 and tx

m, as shown in Fig 4.3a.

By using the continuous cumulative flow ˆ̃N(t, x), the density k̂(x, t) can be estimated as

the slope of ˆ̃N(t, x) on the n–x plane, as shown in Fig 4.3b and c.
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ˆ̃N(t, x)

Time t

Cumulative count N

N(t, x)

tx
m−1

N(tx
m−1, x)

probe m − 1

tx
m

N(tx
m, x)

probe m

|N(A j
m)| − 2

N̂(tx
m−1, x)

N̂(tx
m, x)

|N̂(A j
m)| − 2

q̂(x, t)

(a) n–t cumulative curve at certain point x in space

(x j, x j+1).

Space x

Cumulative count N

N(t, x)

x j x j+1

probe m
N(t, xt

m)

xt
m

probe m − 1
N(t, xt

m−1)

xt
m−1

|N(A j
m)| − 2

N̂(t, xt
m)

N̂(t, xt
m−1)

|N̂(A j
m)| − 2

ˆ̃N(t, x)

−k̂(x, t)

(b) n–x cumulative curve at certain time point t where

x j ≤ xt
m < xt

m−1 ≤ x j+1 is satisfied.

Space x

Cumulative count N

N(t, x)

x j x j+1

probe m
N(t, xt

m)

xt
m

probe m − 1

xt
m−1

N̂(t, xt
m)

ˆ̃N(t, x)

−k̂(x, t)

(c) n–x cumulative curve at certain time point t where

x j ≤ xt
m < x j+1 < xt

m−1 is satisfied.

Figure 4.3: Illustrated examples of estimation method on cumulative curves.
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4.2.4 Discussions

The proposed method can derive the flow, density, and speed without an explicit FD,

meaning that no exogenous assumptions on an FD. Therefore, the proposed method can

easily be applied to various traffic conditions, especially when an FD is unknown or

unpredictable. Its independence from an FD also means that the proposed method can

be utilized to estimate the FD itself. In fact, estimating the cumulative flow based on

eq (4.2) is identical to estimating the area-flow (c.f., MFD; Geroliminis and Daganzo,

2008; Daganzo and Geroliminis, 2008) between two merging/diverging positions and

two consecutive probe vehicles. It implies that if a well-defined MFD exist in the

region (Daganzo and Geroliminis (2008); Laval et al. (2015) prove this fact under certain

conditions such as a link with constant FD), the proposed method could be accurate.

The proposed method utilizes the CL in order to estimate the traffic state from

vehicles’ spacing. This means that the traffic state of a certain time point and position

is estimated based on spacings observed by the same vehicle over a wider area of time

and space. Therefore, the precision of the estimated traffic state is relatively robust against

fluctuations in microscopic vehicular phenomena (e.g., vehicle platoons, lane-changing)

comparing to the basic method proposed of chapter 3, which does not consider the CL.

As noted earlier, equation (4.2) is identical to estimating the area-flow from the probe

vehicle data based on Edie’s generalized definition. Therefore, the accuracy and precision

of |N̂(A j
m)| can be analytically approximated based on eqs (3.21) and (3.23) of the basic

method, as follows:

E
[
|N̂(A j

m)|
]
− |N(A j

m)| ≃
|A j

m| σ
(
h̄n(A)

)2

2(x j+1 − x j)µ
(
h̄n(A)

)3 , (4.8)

RMSE
(
|N̂(A j

m)|
)
≃ |A j

m|
(x j+1 − x j)µ

(
h̄n(A)

)2

√
σ

(
h̄n(A)

)2

2
, (4.9)

where µ() represents the mean, σ()2 represents the variance, h̄n(A) represents the mean

headway of a vehicle n in the region A j
m, and RMSE is root mean square error and taken

as an index for precision. Eqs (3.21) and (3.23) mean that the accuracy and precision of
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the estimated cumulative flow N are improved as mean of the vehicle’s mean headways

increases and the variance of the vehicle’s mean headways decreases. Therefore, the

accuracy and precision of the estimated traffic state have similar tendencies.

The basic method estimates a traffic state in a short road segment using data collected

from the segment itself; therefore, estimation error can be large because vehicles may

keep a platoon formed in the segment (i.e., σ(h̄n(A))2 may be large). In contrast, the

proposed method in this section estimates a traffic state in a position using data collected

from the entire link; therefore, estimation error can be smaller because platoons may be

newly formed and/or declined in the link (i.e., σ(h̄n(A))2 may be smaller).

The deficiencies of the proposed method are as follows. First, single-lane traffic and

FIFO condition were assumed in order to estimate the number of vehicles between two

probe vehicles; such assumptions are not always satisfied in the real world. However,

the proposed method can be applied to traffic where these conditions are not satisfied

if the probe vehicle’s driving behavior is the same as other vehicles. This is because

the expected number of vehicles that overtake a probe vehicle and number that are

overtaken by a probe vehicle is equal to each other. In addition, estimation error may

sometimes decrease under non-FIFO condition; because a platoon, by which mean

headway variances increase, will be formed and/or declined frequently under such

condition. Note that if the road has multiple lanes, the cumulative number (4.3) needs to

be multiplied by the number of lanes. Second, the linear interpolation of the cumulative

flow over time is limited in its ability to reproduce shockwaves. Another deficiency is that

real-time states cannot be estimated. Therefore, short-term future prediction is required

in order to obtain the real-time states*5.

*5This prediction can be based on the estimated traffic state and an FD that can be estimated with the

proposed method.
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4.3 Method with FD and CL

This section develops a method that estimates the traffic state based on the observed

spacing and position data of probe vehicles by considering an FD and CL to represent

the traffic dynamics.

4.3.1 Concept

The following conditions are assumed for traffic that is subject of TSE in this method. The

road schematics (e.g., position and length of links, link connectivity, position of nodes,

number of lanes) are pre-given information for the proposed method. Probe vehicles

are randomly distributed in traffic with unknown penetration rate. The probe vehicles are

PVSMEs, which continuously collect data including spacing (i.e., distance between probe

vehicle and its leading vehicle ahead) and position without error.

The procedure of the proposed TSE method can be described as follows. First, time–

space resolution for TSE, time–space resolution for FD’s parameter estimation, and FD’s

functional form are set by analysts. Then, traffic states and FD parameters are respectively

derived (i.e., observed) from the probe vehicle data. Finally, by using a data assimilation

technique, traffic states are updated from the observed traffic states, the observed FD

parameters, estimated traffic states in the previous timestep, and a traffic flow model.

Specifically, the basic TSE method is utilized for observing traffic states. FD

parameters are derived by regressing spacing and headway (spacing divided by speed)

relation in the probe vehicle data. The cell transmission model (CTM; Daganzo, 1994),

a numerical computation method for solving the LWR model, is applied for the traffic

flow model. As a data assimilation technique, Ensemble Kalman Filter (EnKF; Evensen,

1994) is employed due to its capability for dealing nonlinear phenomena in traffic (the

system model). Note that the observation model of the proposed TSE method can be

represented by a linear system; therefore, EnKF is an appropriate way for this problem.

Fig 4.2 summarizes the procedures of the proposed method.
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Figure 4.4: Illustrated concept of the procedure of the proposed TSE method.
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4.3.2 Ensemble Kalman filter

This part briefly describes EnKF by employing the expressions from樋口 (2011).

A state–space model for EnKF can be described as follows

xt = ft(xt,νt), (4.10)

yt = Htxt + ωt, (4.11)

where eq (4.10) is a system equation, eq (4.11) is an observation equation, xt is a state

vector, ft is a system model, νt is a system noise vector, yt is an observation vector, Ht is

an observation matrix, and ωt is an observation noise vector, at timestep t respectively.

The observation noise vector ωt follows normal distribution whose average is 0 and

variance-covariance matrix is Rt, namely, ωt ∼ N(0,Rt).

The general procedure of EnKF can be described as follows:

Step 1 Generate an ensemble of the initial states {xn
0|0}Nn=1. Let t ← 1.

Step 2 Prediction step:

Step 2.1 Generate an ensemble of the system noises {νn
t }Nn=1.

Step 2.2 Calculate xn
t|t−1 = ft(xn

t−1|t−1, ν
n
t ) for each n.

Step 3 Filtering step:

Step 3.1 Generate an ensemble of the observation noises {ωn
t }Nn=1.

Step 3.2 Obtain the filter ensemble {xn
t|t}Nn=1 for each n, by calculating eq (4.12)

based on yt, Ht, Rt, {xn
t|t−1}Nn=1, {ωn

t }Nn=1.

Step 4 Increment the timestep, t ← t + 1. Go back to Step 2 until t = tmax.

The filter ensemble in Step 3.2 can be derived as follows:

xn
t|t = xn

t|t−1 + K̂t

(
yt + ω̆

n
t − Htx

n
t|t−1

)
, (4.12)

where,

K̂t = V̂t|t−1H′t
(
HtV̂t|t−1H′t + Rt

)−1
, (4.13a)
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V̂t|t−1 =
1

N − 1

N∑
j=1

x̆ j
t|t−1(x̆ j

t|t−1)′, (4.13b)

x̆n
t|t−1 = xn

t|t−1 −
1
N

N∑
j=1

x j
t|t−1, (4.13c)

ω̆n
t = ωn

t −
1
N

N∑
j=1

ω j
t . (4.13d)

In this method, following mean vector of the filter ensemble is defined as an

“estimation result” at timestep t:

x̄t|t =
1
N

N∑
n=1

xn
t|t, ∀t. (4.14)

4.3.3 TSE method formulation

In this subsection, the TSE method is formulated by specifying the terms and the function

in eqs (4.10) and (4.11).

(1) System model

A nonlinear system equation that represents traffic dynamics is formulated.

The state vector xt is defined as follows:

xt =
(
k1(t), k2(t), . . . , ki(t), . . . kM(t),

u1(t), u2(t), . . . , ui(t), . . . uM(t),

kc
1(t), kc

2(t), . . . , kc
i (t), . . . kc

M(t),

κ1(t), κ2(t), . . . , κi(t), . . . κM(t)
)

(4.15)

where, ki(t) is a density, ui(t) is a free-flow speed, kc
i (t) is a critical density, and κi(t) is

a jam density, of cell i at timestep t respectively. Note that ki(t) is the traffic state and

ui(t), kc
i (t), κi(t) are the FD parameters. The number of elements in vector xt is 4M, where

M is total number of discretized spaces (cells) in the system model.

The system model ft consists of two parts: on traffic state dynamics and on FD

parameters. The first part of the system model ft (on traffic state dynamics) is the CTM
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(κi(t), 0)
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Figure 4.5: Triangular FD and its parameters in cell i at time t.

with noise term. It is described as follows:

Qin
i (t) = εk

i (t) min

 li−1ki−1(t),
kc

i (t)
κi(t)kc

i (t) (liκi(t) − liki(t))

 , (4.16a)

ki(t + 1) = ki(t) + Qin
i (t)/li − Qin

i+1(t)/li, (4.16b)

where Qin
i (t) is a number of vehicles that enters cell i at timestep t, li is the length of cell

i, and εk
i (t) is a system noise of cell i at timestep t that is expressed as εk

i (t) ∼ N(1, σ2
k)

(truncated to non-negative values). Triangular FD is employed by eq (4.16); the relation

between triangular FD and its parameters is shown in Fig 4.5. The original CTM

represents traffic dynamics by solving the LWR model (partial differential equation

system of continuous fluid approximated traffic) using the Godunov scheme; it can be

represented as eq (4.16) without the noise term, εk
i (t).

The CTM requires time and space discretization. The size of the CTM’s timestep is

∆t. The cell length should be equal to the timestep size multiplied by the free-flow speed

in the cell (i.e., li = ∆tui) in order to keep consistency with the LWR model; and should

be larger than the value in order to satisfy the CFL condition. The detailed discretization

method is described later, namely, eq (4.23) and Fig 4.6; because it has significant relation

with the observation.

The other part of the system model ft (on FD parameters) is assumed to be random
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Time t

Space x
∆T

∆X

region AT,X for the observation of a traffic state

spacing: am(AT,X)

∆t

li cell i for the system model (CTM)

region B is larger than AT,X and cell i

Figure 4.6: Coordinates for the method with FD and CL and the probe vehicle data.

walks. They can be represented as

ui(t + 1) ∼ N(ui(t), σ2
u), (4.17a)

kc
i (t + 1) ∼ N(kc

i (t), σ2
kc), (4.17b)

κi(t + 1) ∼ N(κi(t), σ2
κ), (4.17c)

where σu, σkc and σκ are deviations for the random walks. The size of the deviations are

given by the analysts.

The system noise vector νt is assumed to be consists of σk, σu, σkc and σκ without

time, space nor flow dependency.

(2) Observation

A linear observation equation can be formulated based on the basic method.

The observation vector yt is defined to have the same property with the state vector xt

as

yt =
(
. . . , k̂i(t), . . . , ûi(t), . . . , k̂c

i(t), . . . , κ̂i(t), . . .
)

(4.18)
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where the ˆ mark indicates that the variable is directly derived (i.e., observed) from the

probe vehicle data. The number of elements in vector yt is also 4M.

From the probe vehicle data, a density in a time–space region can be derived as

follows:

k̂(AT,X) =

∑
m∈P(AT,X) tm(AT,X)∑

m∈P(AT,X) |am(AT,X)| . (4.19)

This is equivalent to eq (3.15). This is the observed state. The definition of AT,X is

AT,X = {(x, t) | X ≤ x ≤ X + ∆X, T ≤ t ≤ T + ∆T } (4.20)

where ∆T and ∆X are predetermined resolutions for time and space, respectively. Eq

(4.20) means that region AT,X is a rectangle in time–space plane with time length ∆T and

space length ∆X (c.f., Fig 4.6).

The FD parameters are derived from regression of headway–spacing relation in

the probe vehicle data. Values of ûi(t), k̂c
i(t), κ̂i(t) are assumed to be constant in a

pre-determinded time–space region B (i.e., the observed FD parameters are constant in

B). They can be determined as

ûi(t) = u(B), ∀(t, i) ∈ B (4.21a)

k̂c
i(t) = w(B)κ(B)/(u(B) + w(B)), ∀(t, i) ∈ B (4.21b)

κ̂i(t) = κ(B), ∀(t, i) ∈ B, (4.21c)

where u(B), w(B) and κ(B) are the free-flow speed, the wave speed and the jam density,

respectively, in time–space region B. The values of u(B), w(B) and κ(B) are the solution

of the following optimization problem:

argmin
u(B),w(B),κ(B)

∑
(m,τ)∈P(B)

D
(
hm,τ, sm,τ, u(B),w(B), κ(B)

)2 ,

s.t. u(B) ≥ 0, w(B) ≥ 0, κ(B) ≥ 0, (4.22)

where hm,τ and sm,τ are stationary headway and spacing, respectively, of vehicle m at time

τ, D is a function that returns the minimum distance from a point (q, k) = (1/hm,τ, 1/sm,τ)

to a curve q = F(k, u(B),w(B), κ(B)), and F is a function representing a triangular
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FD. Therefore, problem (4.22) finds FD parameter values that minimizes total distance

between observed stationary headway–spacing points and the FD curve. Stationary means

that the change rates of these variables in small time duration ∆τ (e.g., (hm,τ−hm,τ−∆τ)/hm,τ)

are small enough. This procedure is required because a theoretical FD is defined under

stationary condition and an empirical FD can be clear triangular relation under stationary

condition Cassidy (1998).

The relation between region AT,X for the observation and cell i at timestep t in the

system model are as follows. The resolution of the observation and that of the system

model can be different; because that of the observation depends on the analysts purposes,

while that of the system model depends on the timestep and free-flow speed in the CTM.

In this method, the size of region AT,X is set to includes one or multiple cell(s) and

timestep(s) completely (i.e., without extending a cell and a timestep over multiple regions

for the observation) in order to make the coordinate system concise and to avoid causing

numerical errors. Specifically, the value of ∆T , ∆x, ∆t and li are determined as follows:

li = αûi(t)∆t, ∀(t, i) ∈ B (4.23a)

∆T = β∆t, (4.23b)

∆X = γl, (4.23c)

where α is a coefficient larger than or equal to 1 (equal to 1 is desirable), and β and

γ are natural numbers. Fig 4.6 shows an example with α = 1, β = 3 and γ = 2. In

the figure, solid curves represent vehicle trajectories, dotted grid represents regions for

the observation, and dashed gird represents cells for the system model. The analysts

can select appropriate values for ∆t, α, β and γ according to their interests. Following

definitions are introduced in order to represent the relation between region AT,X and cell i

at timestep t:

Ai(t) = AT,X, if T ≤ t∆t < (t + 1)∆t ≤ T + ∆T

and X ≤ xi < xi + l ≤ X + ∆X (4.24)

where xi is a space coordinate of the upstream edge of cell i. Therefore, following relation
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holds true:

k̂i(t) = k̂(Ai(t)) = k̂(AT,X). (4.25)

The variance of observation noise ωt, namely, Rt, is determined as follows. Section

3.4 showed that the precision of the estimator (4.19) in a region AT,X is approximately

in inverse proportion to the number of the probe vehicles in AT,X, namely, |P(AT,X)|.

Therefore, deviations of traffic state observation noises are assumed to be inversely

proportional to |P(AT,X)|. As a result, element (a, b) of the matrix Rt is defined as

Rt(a, b) =



ξ2k
|P(Aa(t))| , if a = b and a ≤ M

ξ2
u, if a = b and M < a ≤ 2M

ξ2
kc , if a = b and 2M < a ≤ 3M

ξ2
κ , if a = b and 3M < a ≤ 4M

0, otherwise,

(4.26)

where ξk is deviation for observing traffic state, and ξu, ξkc and ξκ are deviations for

observing respective FD parameters. The size of the deviations are given by the analysts.

An element (i, i) of the observation matrix Ht represents whether the cell i is observed

or not. Therefore, element (a, b) of Ht is defined as

Ht(a, b) =


1, if a = b and a ≤ M and |P(Aa(t))| > 0

1, if a = b and a > M

0, otherwise,

(4.27)

according to the presence of probe vehicles.

4.3.4 Discussions

As results of the filtering steps, the filter ensemble’s mean vector x̄t|t can be obtained. The

density elements (1st to M-th elements) in the mean vectors x̄t|t are the final output of the

TSE procedure. This estimated density is declared as k∗(AT,X) with resolution of ∆T and

∆X.
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The proposed TSE method estimates traffic density k∗(AT,X) from the probe vehicle

data. The probe vehicle data consist of continuous position and spacing of probe vehicles,

namely, tm(AT,X) and am(AT,X) ∀m ∈ P(AT,X) ∀T, X. The framework of EnKF with

the CTM is employed for the estimation procedure. The functional form of the FD is

assumed to be triangular. On the other hand, the parameters of the FD are not required

to be assumed; they are endogenously estimated from probe vehicle data. Note that

the proposed approach possibly employs FDs with other functional forms; and use time

and/or space varying FD parameters by defining appropriate B. The parameters regarding

to time–space resolution (i.e., cell and timestep size for CTM, A for state observation,

B for FD parameters observation) of the estimation are given by the analysts according

to their interest. The size of the noise terms are required to be given. Note that the

other variables of a traffic state, namely, flow and speed, can be easily derived from the

estimated density and FD.

The method assumes that probe vehicles are representing whole traffic without biases,

so that the FD parameters and traffic states can be estimated without biases. However, in

mixed traffic condition with traditional vehicles and automated ones, probe vehicles may

have biased driving behavior and therefore the proposed TSE method will be biased.

The method treats traffic in a link—no merging/diverging sections exist in the middle

of the link. Traffic in a network with multiple links can be treated by implementing a node

conservation law and a merging/diverging model in the proposed approach.

For large-scale real world application, the method may be not very costly in terms

of computation and data-handling. EnKF requires less computation costs compared with

other techniques like the particle filter. Data required for the method are position and

spacing, which are calculated by distributed on-vehicle systems for their own purposes;

therefore, not heavy data analyses, transmission and storage are required.

The method may be easy to be incorporated with other traffic data collection methods

(e.g., detectors, GPS-equipped probe vehicles), since the method is based on data

assimilation. It can be achieved by following procedures: incorporating the collected data

to yt, and defining appropriate Ht and Rt considering characteristics of the data collection
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methods.

4.4 Comparison among three TSE methods

Chapter 3 and this chapter proposed three methods for TSE, namely, the basic method,

the method with CL, and the method with FD and CL. This section qualitatively compares

the three methods and discusses their expected characteristics.

The basic method estimates traffic state in an arbitrary region using data collected

from the region. Since it only assumes random sampling condition, it can be applicable

without theoretical discrepancies regardless of traffic condition. However, the resolution

of estimated traffic state is identical to the data collection area. Therefore, amount of data

will be limited if an analyst estimates high resolution traffic state. It implies that the basic

method is not robust against local fluctuations in microscopic traffic, such as platoon and

lane-changing.

The method with CL estimates traffic state in an arbitrary point in a certain region.

The region is product of predetermined space, which is assumed to be satisfy a CL,

and area between two probe vehicles. Therefore, amount of data for TSE is relatively

large compared with the basic method; it may improve precision of estimating high

resolution traffic state. On the other hand, a CL is not completely satisfied under non-FIFO

condition, such as in multi-lane and multi-class traffic.

The method with FD and CL estimates traffic state in an arbitrary region. Traffic

dynamics, which means that traffic propagation between adjacent regions, is explicitly

considered by assuming an FD and a CL. The FD’s parameters are endogenously

estimated from the probe vehicle data. Therefore, amount of data for TSE is relatively

large compared with the method with CL as well as the basic method. The method

employs traffic flow model with an Eulerian coordinate system. It means both advantage

and disadvantage: the method cannot utilize information of probe vehicle trajectories,

while the method is not severely affected by the discrepancies under non-FIFO condition.

Assuming existence of constant FD means that the method is not robust against
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Time t

Space x

input data (reso. of A)

output state (reso. of B)

(a) The basic method

Time t

Space x
input data (reso. of A)

output state (reso. of B)

(b) The method with CL

Time t

Space x
input data (reso. of A)

output state (reso. of B)

(c) The method with FD and CL

Figure 4.7: Illustrated comparison of three TSE methods.

unpredicted traffic phenomena, such as incident.

Fig 4.7 and Table 4.1 summarize above mentioned characteristics of the three TSE

methods. In Fig 4.7, resolution of input data for TSE (i.e., size of an element in the setA

in eq (2.20)) and resolution of estimated traffic state (i.e., that of B) are illustrated along

with the probe vehicle data.
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Chapter 5 Simulation Experiments-based

Validation

This chapter*1 describes an empirical analysis of the proposed methods based on

synthetic traffic data generated by a microscopic traffic simulator. The simulation

experiments-based validation have some advantages compared with the field experiment-

based validation that is described by chapter 6. For example, measurement errors and

biases in probe vehicles driving behavior can be eliminated in simulation. Therefore, this

validation complements the limitations of the field experiment-based validation of chapter

6. However, simulation experiments have limitations in the model and scenario setting.

The simulation model describing vehicle behavior is car-following model, which controls

the input variable of the proposed TSE methods directory. In addition, scenario setting of

simulation, namely, demand and supply to road sections, is given ad hoc.

Sections 5.1, 5.2 and 5.3 describe validation results of the basic estimation method,

the estimation method with CL, and that with FD and CL, respectively, based on synthetic

traffic data generated by a microscopic traffic simulator.

5.1 The basic method

5.1.1 Simulation Scenario

An experiment environment is prepared as follows. To generate traffic conditions

investigated in a validation analysis, Aimsun (TSS-Transport Simulation Systems),

microscopic traffic simulator based on a car-following of Gipps (1981) and lane-changing

model of Gipps (1986), is employed. The parameters of the car-following model are

*1This chapter is mainly based on joint research with Dr. Takahiko Kusakabe and Prof. Yasuo Asakura,

published in ISTTT21, Transportation Research Part C (Seo and Kusakabe, 2015, in press) and IEEE ITSC

2015 (Seo et al., 2015b, accepted).
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Table 5.1: Parameters of the model in simulation

Parameter name Mean Deviation

Desired speed (km/h) 60 10.0

Max acceleration (m/s2) 3 0.2

Normal deceleration (m/s2) 4 0.5

Max deceleration (m/s2) 6 0.5

Min spacing 1 0.3

Length (m) 4 0.5

shown in Table 5.4. The road is a homogeneous freeway that has a bottleneck at the

end of the section. It has two lanes and 3 km length. Based on the above setting, traffic

condition for 1 hour with a queue was generated. The average value of ground truth

traffic states are 2162.8 veh/h, 128.5 veh/km and 32.6 km/h for flow, density and speed,

respectively.

The bias and the root mean square error (RMSE) are employed as accuracy and

precision indices, where Bias(θ̂) = E[θ̂ − θ] and RMSPE(θ̂) =
√

E[((θ̂ − θ))2]. Variable

θ denotes a ground truth traffic flow variable (one of q, k and v) at a certain time and

space calculated based on Edie’s definition; and variable θ̂ is one of those estimated from

the probe vehicle data. The parameters set for scenarios were PR P (%), time resolution

∆t (min), and space resolution ∆x (km). The PR P is selected from 10.0%, 5.0% and

0.1%. The time resolution ∆t is selected from 1 min or 60 min; and the space resolution

∆x is selected from 0.1 km or 3 km. The error indices are calculated from the results

of 20 estimation iterations. In each iteration, probe vehicle data for the estimation were

composed of different combinations of probe vehicles whose PR was expected to be the

scenario parameter P. Traffic state in a region A j
i where probe vehicles do not exist is

substituted by that of its neighborhood region, A j−1
i .
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5.1.2 Results

Fig 5.1 visualized estimated traffic state by the basic method and corresponding ground

truth as time–space diagrams, where plot color represents value of traffic state.*2 The

scenario parameters are (P,∆t,∆x) = (10, 0.1, 1). The error indices are RMSE(q) = 719.2,

Bias(q) = 158.1, RMSE(k) = 23.6, Bias(k) = 6.2, RMSE(v) = 4.8, and RMSE(v) =

−0.1. According to the figure, estimation errors are relatively large at free-flow state and

relatively small in congested state. These phenomena can be explained by the headway

and spacing distribution (c.f., sections 3.4 and 3.6); it is known that they tend to be large

in free-flow state in general.

Table 5.2 summarizes the results of the estimation. The precision and bias often

improves as P, ∆t and ∆x increased; these are reasonable features and as analytically

expected (c.f., sections 3.4 and 3.6). The biases are positive in most of the scenarios.

However, negative biases are also found, such as (P,∆t,∆x) = (0.1, 0.1, 1) scenario. This

may be caused by following two reasons: random error due to small number of samples

(simulation iterations), and the interpolation method for regions without probe vehicles.

In order to validate the analytically expected bias and precision shown in eqs (3.21)–

(3.24), they are calculated from all the vehicle data and compared with actual errors. The

results on density are shown in Table 5.3. B̂ias(k̂) and R̂MSE(k̂) represent the analytically

expected bias and precision, respectively, of estimated density. The analytically expected

errors and the actual ones seems to be corresponded well in P = 5.0, 10.0 (%) scenarios.

This implies that the analytical approximations discussed at section 3.4 may be reliable

in such situations, which are much generalized conditions than that of required for strict

satisfaction of eqs (3.21)–(3.24).

*2The figure (and most of other similar figures in this dissertation) employs the color scheme developed

by Kusakabe et al. (2010), which aims appropriate visualization of traffic data, in both of printing and

electrical presentation.
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Table 5.2: Precision and bias indices over estimation scenarios.

Scenario parameters Flow (veh/h) Density (veh/km) Speed (km/h)

P (%) ∆t (min) ∆x (km) RMSE(q) Bias(q) RMSE(q) Bias(k) RMSE(q) Bias(v)

0.1 1 0.1 1102.3 −622.8 112.1 −70.9 18.2 5.1

0.1 60 0.1 849.8 323.6 58.7 12.1 13.9 5.5

0.1 1 3.0 1140.9 −684.9 76.3 −10.3 12.3 −2.6

0.1 60 3.0 522.1 120.3 46.4 12.8 3.9 0.3

5.0 1 0.1 809.5 117.4 33.4 5.2 5.9 −0.3

5.0 60 0.1 202.3 12.8 11.9 1.2 1.2 0.1

5.0 1 3.0 540.7 126.4 38.0 11.8 3.8 −0.2

5.0 60 3.0 147.5 50.1 10.9 2.6 0.6 0.1

10.0 1 0.1 719.2 158.1 23.6 6.2 4.8 −0.1

10.0 60 0.1 121.9 15.4 7.4 1.7 0.8 0.0

10.0 1 3.0 414.9 96.2 26.9 6.8 2.5 0.0

10.0 60 3.0 82.8 −23.0 7.0 −1.5 0.5 0.0

Table 5.3: Analytically expected precision and bias.

Scenario parameters Precision (veh/km) Bias (veh/km)

P (%) ∆t (min) ∆x (km) R̂MSE(k̂) RMSE(k̂) B̂ias(k̂) Bias(k̂)

0.1 1 0.1 112.1 159.8 585.9 −70.9

0.1 60 0.1 58.7 81.4 88.8 12.1

0.1 1 3.0 76.3 261.9 639.0 −10.3

0.1 60 3.0 46.4 89.8 87.6 12.8

5.0 1 0.1 33.4 26.6 16.0 5.2

5.0 60 0.1 11.9 11.6 1.8 1.2

5.0 1 3.0 38.0 33.6 11.7 11.8

5.0 60 3.0 10.9 12.7 1.8 2.6

10.0 1 0.1 23.6 18.8 8.0 6.2

10.0 60 0.1 7.4 8.2 0.9 1.7

10.0 1 3.0 26.9 23.7 5.8 6.8

10.0 60 3.0 7.0 9.0 0.9 −1.5
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(a) Estimated flow (b) Ground truth flow

(c) Estimated density (d) Ground truth density

(e) Estimated speed (f) Ground truth speed

Figure 5.1: Results of the basic method visualized as time–space diagrams.

5.2 The method with CL

This section presents the validation of the proposed TSE method with CL though a

simulation experiment.
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Table 5.4: Vehicle behavior parameter setting in simulation.

Parameter name Mean Deviation

Desired speed (km/h) 80 10.0

Max acceleration (m/s2) 3 0.2

Normal deceleration (m/s2) 4 0.25

Max deceleration (m/s2) 6 0.5

Min spacing (m) 1 0.3

Vehicle length (m) 4 0.5

5.2.1 Simulation scenario

A microscopic traffic flow simulator called AIMSUN (TSS-Transport Simulation Sys-

tems), which is based on the car-following model of Gipps (1981) and the lane-changing

model of Gipps (1986), was employed for the simulation. The road section in the

simulation had a single-lane and length of 5 km with homogeneous geometry except for

a bottleneck at the end of the section. Note that this road setting always satisfies the

assumptions of the proposed method*3. The vehicles in the simulation had heterogeneous

driving behaviors, such as the desired speed. Table 5.4 summarizes the parameters. The

probe vehicles were randomly sampled from all the vehicles to simulate a given PR. The

position and spacing of the probe vehicles with 1 s interval were used for estimating a

traffic state.

We generated a traffic situation with a queue by setting the demand from upstream

of the section and the capacity at the bottleneck at the end of the section. A ground truth

state was available because this was a simulation experiment. Fig 5.2a–d show the ground

truth state (flow q, density k, speed v) and cumulative flow Ñ as time–space diagrams. The

contour lines of Ñ were drawn at intervals of 100 veh. By applying the proposed method

to the generated traffic situation, the characteristics of the proposed method in a various

traffic situations (e.g., free-flow, congested flow, flow with backward wave and flow with

*3Except the first vehicle enters the road; because it does not have its leader. We removed it from

candidates for the probe vehicles.
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forward wave) can be investigated.

5.2.2 Results

The estimated variables were the traffic state at certain time–space resolutions (i.e.,

the intervals for the central differences) and the cumulative flow in the section. The

cumulative flow was calculated at 1 min time intervals and 100 m space intervals

according to eq (4.5). The density k̂ was calculated based on the central differences at

100 m intervals according to eq (4.6).

Fig 5.2e–h show the estimated traffic state (q̂, k̂, v̂) and cumulative flow ˆ̃N as a

time–space diagram where the probe vehicle penetration is 3.5%. The contour lines of
ˆ̃N were drawn at intervals of 100 veh. Through comparison with the ground truth shown

in Fig 5.2a–d, the estimation can be used to acquire tendencies of the ground truth, such

as the queue propagation and dissolution. More detailed phenomena such as stop-and-go

waves were partially captured, but with some errors. This is a deficiency of the method

of interpolating the continuous cumulative flow in the proposed methods, namely, liner

interpolation over the time.

Fig 5.3 compares the estimated variables and ground truth as scatter diagrams. The

estimated variables well corresponded at most of true states although the values were

slightly overestimated, as suggested by the analytically expected bias in eq (3.23). In

Fig 5.3d, a notable bias can be found around Ñ ∈ [800, 1000]. According to Fig 5.2d,

this value of Ñ is located at the area with rapidly diminishing queue, namely, around t ∈

[30, 40]. It implies that, at the area, a probe vehicle may experience much different traffic

state from its preceding probe vehicle’s experience. Therefore, the headway variance may

increases, so that the bias becomes large.

Table 5.5 summarizes the error indices of the traffic state estimation for different

combinations of the PR P. The RMSPE and bias were employed as error indices, which

are defined as RMSPE(θ̂) =
√

E[((θ̂ − θ)/θ)2] and Bias(θ̂) = E[θ̂ − θ], respectively.

The error indices of each scenario were calculated from 100 iterations under different
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(a) Ground truth flow q. (b) Ground truth density k.

(c) Ground truth speed v. (d) Ground truth cumulative flow Ñ.

(e) Flow q̂ estimated with proposed method. (f) Density k̂ estimated with proposed method.

(g) Speed v̂ estimated with proposed method. (h) Cumulative flow ˆ̃N estimated with proposed

method.

Figure 5.2: Time–space diagrams of traffic state and cumulative flow.
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(a) Flow q. (b) Density k.

(c) Speed v. (d) Cumulative flow Ñ.

Figure 5.3: Scatter diagrams of estimated variables vs. ground truth variables.

samplings of probe vehicles. The results showed clear improvements in the estimation

accuracy and precision as the PR was increased. Almost all of the scenarios overestimated

the states similar to Fig 5.3d and for the same reasons.

5.2.3 Effect of incorporating CL

In order to investigate the effect of incorporating the CL, the flow was estimated using

the basic method which does not consider the CL but uses the same probe vehicle data.

This is defined as q̂withoutCL in this section. The time and space resolution for calculating

q̂withoutCL were identical to the intervals of the central difference in the proposed method:
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Table 5.5: Error indices for scenarios with proposed method.

PR Flow (veh/h) Density (veh/km) Speed (km/h)

P RMSPE(q̂) Bias(q̂) RMSPE(k̂) Bias(k̂) RMSPE(v̂) Bias(v̂)

0.2% 59% 151.0 107% −1.6 134% 1.1

1.0% 55% 134.8 87% 2.2 61% −2.1

3.5% 42% 83.6 52% 2.1 36% −0.7

5.0% 38% 69.6 48% 2.4 36% −0.2

10.0% 33% 63.8 45% 2.4 38% 0.7

Table 5.6: Comparison between the method with CL and the basic method.

P RMSPE(q̂) RMSPE(q̂withoutCL) PoI

0.2% 59% 66% 12%

1.0% 55% 63% 7%

3.5% 42% 59% 27%

5.0% 38% 53% 38%

10.0% 33% 52% 43%

1 min and 100 m. Table 5.6 presents the results of the comparison. The percentage of

improvement (PoI) is defined as (RMSPE(q̂withoutCL) − RMSPE(q̂))/RMSPE(q̂) and is an

index that represents the positive effect of incorporating the CL. According to the results,

incorporating the CL clearly improved the estimation precision.

5.3 The method with FD and CL

In this section, numerical characteristics of the proposed TSE method with FD and CL

are investigated.

5.3.1 Simulation scenario

Road schematics and vehicle behavior models for this experiment environment are

identical to that in section 5.1.1.

The PR P was selected from 5%, 1% and 0.5%. Two types of time–space resolution

for observation were selected, namely, (∆T , ∆X) ∈ {(1 min, 300 m), (10 min, 1000 m)}.
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The observation error (i.e., precision of the basic method) is expected to be smaller as

the observation resolution increased as shown in chapter 3 and section 5.1. In order

to simplify the discussion, region B is set to be the entire time–space region—the FD

parameters are assumed to be constant throughout the simulation.

A timestep width in the system model, ∆t, was set to 0.111 min. The other variables

on the resolution of the system model, namely, α, β, and γ, were set to certain values such

that the cell length li is identical to 100 m; their exact values vary in estimation iterations

depending on observed free-flow speed u and given observation resolution ∆T and ∆X.

With these setting, the value of α is almost always slightly larger than 1; therefore, the

CFL condition is expected to be satisfied. Above mentioned parameters are set to satisfy

the conditions mentioned in section 4.3.3, eq (4.23).

The size of the noise terms were set ad hoc as follows: σk = 0.1, σu = 0.5 (m/s), σkc =

0.002 (veh/m), σκ = 0.01 (veh/m), ξk = 0.01 (veh/m), ξu = 5.0 (m/s), ξkc = 0.1 (veh/m)

and ξκ = 0.2 (veh/m). The reason for such larger size of the observation noises was that

general traffic does not always follow the triangular FD, especially at a microscopic scale.

Criteria for stationary headway–spacing determination is set as less than 10% change rate

during 5 s (= ∆τ). In general, if this criteria is strict, precision of FD observation will be

increased. However, if the criteria is too strict compared with the total amount of data,

amount of data that passes the criteria becomes few so that the precision can be low. The

number of ensembles N was set to 200. In general, larger N value makes accuracy of

EnKF’s Monte Carlo simulation better at the cost of computation.

5.3.2 Results

Fig 5.4 shows traffic density as time–space diagrams, whose horizontal axes represent

time, vertical axes represent space, and color represents density*4. In Fig 5.4, a

represents the ground truth value k, b represents observed value k̂ with (P,∆T,∆X) =

(5%, 1 min, 300 m), and c represents estimated value k∗ with the identical resolution.

According to Fig 5.4, the noises in the observation were reduced in the filtering result,
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(a) ground truth traffic state k

(b) observed traffic state k̂

(c) estimated traffic state k∗

Figure 5.4: Typical estimation results visualized as time–space diagrams.
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Figure 5.5: Observed FD, disaggregated headway–spacing relation and aggregated flow–density relation.

especially at free-flow areas, such as traffic before 10 min. On the other hand, difference

between observed and estimated states in a congested area was not so remarkable—both

were close to the ground truth states.

Fig 5.5 shows observed FD by probe vehicles (red line), disaggregated headway–

spacing relation of vehicles (gray dots) and aggregated flow–density relation in

time–space regions (blue crosses), with (P,∆T,∆X) = (5%, 1 min, 300 m). The observed

FD’s parameter values were û = 55.4 (km/h), k̂c = 73.7 (veh/km) and κ̂ = 388.5

(veh/km). The disaggregated relation is widely scattered due to the high fluctuation and

heterogeneity in microscopic vehicle behaviors. On the other hand, observed FD is closed

to the aggregated relation which is clearly bivariate.

Table 5.7 summarizes the estimation performance. The root mean square error

(RMSE) and mean absolute percentage error (MAPE) were employed as precision

indices on estimated density. Their definitions were as follows: RMSE(k∗) =√
1/S

∑
∀(T,X)

(
k(AT,X) − k∗(AT,X)

)2, MAPE(k∗) = 1/S
∑
∀(T,X) |k(AT,X)− k∗(AT,X)|/k(AT,X),

where S is total size of the results (i.e., combination of (T, X)). The simulation were

performed for 50 times in order to get the average performance. In addition, the

*4In order to emphasize the difference between results, color scheme for this figure is different to the

other figures.
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Table 5.7: Summary on the estimation performance

Scenario parameters Precision indices Percentage of improvement

P ∆T (min) ∆X (m) RMSE (veh/km) MAPE PoI(RMSE) PoI(MAPE)

0.5% 1 300 65.0 68.5% 8.4% 16.2%

0.5% 5 500 45.6 34.6% 8.3% 19.0%

0.5% 10 1000 31.0 12.7% −4.3% 13.5%

1.0% 1 300 49.7 58.7% 12.6% 19.0%

1.0% 5 500 32.3 22.9% 6.5% 24.4%

1.0% 10 1000 11.6 7.5% 15.1% 21.2%

5.0% 1 300 20.3 23.0% 20.0% 29.6%

5.0% 5 500 13.6 9.4% −6.8% 16.7%

5.0% 10 1000 7.4 3.8% 5.8% 15.3%

percentage of improvement (PoI) was employed for evaluate the effect of the data

assimilation. It was defined as PoI(p) = (p(k̂)− p(k∗))/p(k̂), where p is a precision index,

namely RMSE or MAPE. The value of PoI represents improvement of estimated density

k∗ compared to observed density k̂; if the value is positive, the data assimilation worked

positively for precision. According to Table 5.7, distinguishable trends can be found

for precision. The precision is increased as probe vehicle penetration rate increases and

time–space resolution lowers. In addition, according to PoI value, the data assimilation

almost always reduced estimation error, especially on MAPE.

5.3.3 Effect of incorporating FD and CL

The results showed that the estimation precision improved due to the data assimilation

in the most cases. According to Fig 5.5, FD parameters were precisely observed by

PVSMEs; therefore, the prediction steps by the traffic flow model are expected to work

well. Then, according to Fig 5.4 and Table 5.7, improvements of the estimation precision

due to the filtering steps were confirmed. Especially, they were remarkable at low density

regime; for example, free-flow area shown in Fig 5.4 and PoI(MAPE) in Table 5.7. This

is a preferable feature for a TSE method with the PVSMEs; because the precision of
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the basic method was relatively low at low density traffic. Contrary, the precision in

high density (congested) regime was not improved significantly. This may be due to

that the vehicular fluctuation are low in congested regime, since vehicle movements are

restricted by the jam. These implied that estimation errors caused by high fluctuations in

microscopic vehicular traffic were reduced as intended.
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This chapter*1 describes an empirical analysis of the proposed methods based on actual

traffic data collected via a field experiment. The advantage of a field experiment-based

validation is singular: it can be realistic. This is the most preferable feature for the

proposed TSE methods; because not all factors in the microscopic vehicle behavior, which

determines spacing of vehicle in traffic, can be represented by existing traffic flow models,

as described in chapter 2. In addition, traffic condition, namely, demand and supply of the

route, is also realistic.

Section 6.1 describes the details of a field experiment we conducted at an urban

expressway in Tokyo. Sections 6.2 and 6.3 describes the validation of the basic method of

chapter 3 and the method with CL of section 4.2, respectively, based on the data collected

via the experiment. Note that the method with FD and CL of section 4.3 is not validated

here because of technical limitations of the field experiment—the resolution of the data

was not sufficient for it.

6.1 Field experiment

The field experiment was conducted on Tuesday, September 24, 2013, from 15:00 to

16:00. The location was the counterclockwise direction in the Inner Circular Route of the

Metropolitan Expressway, which is an urban expressway in Tokyo, Japan. The weather

was cloudy with occasional light rain. Twenty probe vehicles equipped with spacing and

position measurement devices were employed.

*1This chapter is mainly based on joint research with Dr. Takahiko Kusakabe and Prof. Yasuo Asakura,

published in the 34th JSTE Conference (瀬尾ら, 2014), ISTTT21 (Seo and Kusakabe, 2015, in press) and

Transportation Research Part C (Seo et al., 2015a; Seo and Kusakabe, 2015, in press).
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6.1.1 Inner Circular Route

The Inner Circular Route (i.e., C1) is a ring-shaped urban expressway located in central

Tokyo. In the experiment, the probe vehicles ran in the counterclockwise direction.

The loop length is 14.2 km, and most sections have two lanes for cruising and passing.

The speed limit is 50 km/h. Figures 6.1 and 6.2 show a map and a schematic of C1,

respectively. The space coordinates denoted in Fig 6.2 are used throughout this chapter.

In Fig 6.2, a junction is abbreviated as JCT, arrows on the upper side represent the merging

from or diverging to other highway routes, and arrows on the lower side represent on/off

ramps. Note that the survey section was limited to an 11 km length section from the 0 km

point to the 11 km point, because a series of tunnels at the 11–14.2 km disturbed the GPS

functions.

A large number of dual supersonic traffic detectors are installed in C1. They enable us

to obtain highly detailed and accurate data on the traffic flow variables*2. The traffic

detectors observed the flow, spot speed, and spot occupancy directly, and these were

converted to density and speed for validation of the proposed method. The observation

with the traffic detectors is performed at a time resolution of 1 min and average space

resolution of 250 meters per lane. In this experiment, these detector observed data are

used for comparison purposes. Fig 6.3 shows the density observed by the detectors in the

cruising lane as a time–space diagram; where the horizontal axis indicates the time and

future is to the right, the vertical axis indicate space and downstream is in the upward

direction. Some remarkable events were occurred during the experiment. For example,

Edobashi JCT at the 8 km point become a merging bottleneck and caused a 3 km queue

was formed at 15:50. Queue spillovers from other highway routes were observed via

Takebashi JCT at the 10 km point and Hamazakibashi JCT at the 3.8 km point.

*2白石ら (2012) reported that measurement error in 5 min flow of a dual supersonic traffic detector was

usually less than 10%.
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Figure 6.1: Map of the Inner Circular Route.

loop

0km 2km 4km 6km 8km 10km 11km 12km 14km

Edobashi JCT

Hamazakibashi JCT

Ichinohashi JCT

Tanimachi JCT

Miyakezaka JCT

Takebashi JCT

Figure 6.2: Schematic of the Inner Circular Route (counterclockwise direction).

Figure 6.3: Time–space diagram of density in C1 as observed by the detectors.
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Figure 6.4: Preparation of probe vehicles and equipments.

6.1.2 Probe vehicle data

Twenty standard-sized passenger vehicles with non-professional drivers were employed

as the probe vehicles. The vehicles were equipped with mono-eye cameras and GPS

loggers on their dashboards to identify and record the spacing and position. The

survey section was limited to the cruising lane of the 0–11 km section because of law

restrictions*3 and the GPS function. Most of the probe vehicles drove three laps on C1,

and a total of 59 laps were performed during the experiment period. This corresponded to

42.1 veh/h/lane. The flow of all vehicles in the survey section of C1 was 1255.2 veh/h/lane

according to the detector data. Therefore, the PR was roughly calculated to 3.5%. Probe

vehicle data, including positions and spacing, were collected at intervals of 15 s. Thus,

an average number of 38.8 data points was recorded per lap. Fig 6.4 shows preparation of

probe vehicles and data collection equipments.

(1) Position data

Vehicle positions were identified by the GPS data and simple map-matching procedure.

The procedure is described as follows:

1. a digital map consists of the experiment site of links and nodes was acquired from

an external source,

*3According to Japan’s Road Traffic Act, vehicles should drive in the cruising lane unless changing

routes, overtaking within the speed limit, or avoiding danger.
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(a) Raw data of trajectories plotted on a

map

(b) Map-matched trajectories on time–space diagram of speed

Figure 6.5: Trajectories of probe vehicles.

2. vehicle coordinates identified by GPS were matched to their closest point on the

links,

3. data points located at 11–14.2 km section where the series of tunnels exist were

removed.

Fig 6.5 shows the trajectories of the probe vehicles. Fig 6.5a shows the raw data plotted

on a map of C1 where the red solid line indicates the shape of C1 and small circles

indicate the vehicle coordinates. According to the figure, the measurement errors were not

significant excluding tunnels. Fig 6.5b shows the map-matched data on the time–space

diagram with speed; the trajectories seemed to be reasonable. For example, the probe

vehicles tended to be slow (i.e., the slopes of trajectories decreased) when they went

through the bottleneck at the 8 km point just like other vehicles (i.e., the plot color was

dark). Although small errors were found in the GPS measurement and map-matching, the

proposed traffic state estimation method is not significantly affected by such small errors

as mentioned in section 3.6.
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(2) Spacing data

This experiment employs a spacing measurement method using a mono-eye camera

equipped on the dashboard of the probe vehicles. Fig 6.6 shows some images taken by

the cameras on the probe vehicles during the experiment; typical road environments and

vehicle characteristics at the C1 are shown. The procedure of the spacing measurement

method is described as follows:

1. the leading vehicles of the probe vehicles in the image were identified,

2. the apparent size of the leading vehicles’ body width were measured,

3. the spacing were calculated based on the apparent size, its assumed actual size,

angle of view of camera, etc.

The reason for the simple method is because implementation is relatively easy and they

satisfy the requirement for this experiment. That is, the method is

• capable of detecting the leading vehicle at relatively long distance that often appears

in highways,

• capable of determining the lane driven by the probe vehicle and the leading vehicle,

and

• based on a clear logic (i.e., not a black box).

Note that any methods of measuring spacing are considerable for the proposed traffic

state estimation methodology as long as the measurement method satisfies the required

capability.

Specifically, the spacing s was estimated from images taken by the probe vehicles

based on the following pinhole camera model assuming that the road is not curved.

s =
2wp0

p tan(θ0/2)
+ l, (6.1)

where w is the actual body width of the leading vehicle, p0 is the width of the image, p is

the apparent size of the body width of the leading vehicle in the image, θ0 is the horizontal

angle of view of the camera, and l is the actual body length of the leading vehicle. Here,
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Figure 6.6: Examples of images taken by the cameras on the probe vehicles.

the variables p0 and θ0 were known. The actual body width w was assumed to be 1.92 m.

This assumption comes from prior knowledge on the average width of a standard vehicle

(1.8 m), large vehicle (2.4 m), and the average ratio of large vehicles on the route (20%).

The actual body length l was assumed to be the same as that of the probe vehicles (5 m).

Variable p was manually measured from the images. If these variables have errors (i.e.,

wrong assumptions on w and l, measurement error in p), the estimated spacing may be

biased. The errors affect biases almost proportionally: therefore, the biases are not very

significant. If the spacing was not measurable (i.e., the leading vehicle was not visible),

a value of 100 m was assumed for the value. The most frequently appeared reason of the

failure in spacing measurement was too large distance to leading vehicles. Therefore, the

large value that is close to the maximum detectable range was substituted for the missing

spacing data. Such cases occurred for 1.86% of all the data.

Fig 6.7 shows a part of the probe vehicle data as a time–space diagram. A dot

represents a position datum collected by a probe vehicle. Data between two data points are

linearly interpolated. Red areas represent areas between probe vehicles and their leading

vehicles.
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Figure 6.7: Part of the probe vehicle data.

If the assumed or measured variables have errors, the estimated spacing will have

errors. We cannot determine the amount of the errors directly; because the ground truth

data for the vehicle size during the experiment do not exist. However, the method may

not be biased significantly and practicable for the experimental measurement because the

assumed variables were based on common knowledge on statistics and regulations and

detector data. In addition to that, the measurement was based on high resolution images.

(3) Basic validation

In order to validate the probe vehicle data, we compared the data with the spacing and spot

speed of all of the vehicles at four specific locations as calculated by the detectors’ pulse

data*4. Figures 6.8 and 6.9 show the speed and spacing distributions. Their statistics

(mean µ, standard deviation σ, and Kolmogorov–Smirnov (K–S) test value
√

nDn) are

summarized in Table 6.1. If the K–S test value is larger than 1.36, the difference between

probe vehicle data and detector data is statistically significant at the 5% level. According

to these comparisons, there considered to be differences between the two data at some

*4The detectors’ pulse data include every individual vehicle’s spot speed, body length, and time headway

at the detector location.
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(a) At 0.390 km point. (b) At 2.980 km point. (c) At 7.140 km point. (d) At 8.640 km point.

Figure 6.8: Spot speed distributions in probe vehicle data and detector data.

(a) At 0.390 km point. (b) At 2.980 km point. (c) At 7.140 km point. (d) At 8.640 km point.

Figure 6.9: Spacing distributions in probe vehicle data and detector data.

locations. The probe vehicles had slightly faster speed and larger spacing at the three

points (0.390 km, 2.980 km and 7.140 km points), and the reverse occurred at the

8.640 km point. The probe vehicles’ routes were assigned to maintain cruising lane,

therefore, their driving behavior may have slightly differed from that of other vehicles of

which paths were going to diverge or had just merged. For example, the 8.640 km point

was located downstream of the merging at Edobashi JCT (c.f., Fig 6.2). At this location,

vehicles from C1 are often required to slow down to merge because of its road alignment.

Therefore, the probe vehicles may have tended to be slower than other vehicles. Because

of these reasons, the probe vehicle data may contain location-specific biases. This means

that the random sampling assumption was not rigorously satisfied in the experiment.

6.2 The basic method

We quantitatively analyzed the traffic state estimation results of the basic method

presented in chapter 3. Section 6.2.1 visualize examples of estimation results as
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Table 6.1: Spot speed and spacing statistics of probe vehicle data and detector data.

0.390 km point 2.980 km point 7.140 km point 8.640 km point

Detector data (µ, σ) [km/h] (24.2, 10.7) (25.8, 10.5) (26.3, 11.4) (29.7, 09.3)

Speed Probe vehicle data (µ, σ) [km/h] (27.7, 11.8) (28.4, 06.8) (29.5, 10.2) (26.2, 11.0)

K–S test value
√

nDn 0.684 1.248 0.763 1.568

Detector data (µ, σ) [m] (19.4, 11.2) (19.2, 11.7) (20.7, 12.3) (21.5, 11.8)

Spacing Probe vehicle data (µ, σ) [m] (21.8, 11.5) (22.4, 09.9) (24.5, 11.4) (19.7, 08.5)

K–S test value
√

nDn 1.008 1.784 1.503 0.518

time–space diagrams in order to investigate how well the traffic phenomena can be

reproduced by the proposed method. Section 6.2.2 summarizes indices for accuracy and

precision of the proposed method for various settings of the PR and the resolution. Section

6.2.3 describes relation between accuracy and precision of the proposed method and the

traffic state.

6.2.1 Visualizations of estimation results

Fig 6.10 visualizes traffic states estimated by the proposed method (left side: a, c, e),

as well as ones observed by the detectors (right side: b, d, f). The time and space

resolution of the estimation were set to 5 min and 500 m, respectively, that is close to

average distance between detectors and detector’s data aggregation time interval in urban

expressways in Japan. The PR was 3.5%. At this resolution and PR, the expected number

of probe vehicles per region was 3.83; therefore, bias in the estimator is expected to be

small (c.f., section 3.3). Traffic phenomena that were observed in the traffic detector data

could be recognized in this estimation result. For example, Fig 6.10c shows a significant

queue whose head was at the 8 km point and that propagated to a length of around 3 km

at 15:50. There were other congested areas whose heads were at around the 3.5 km and

10 km points. These characteristics were almost identical to those described in chapter 3

and Fig 6.10d by the detector data.

The resolution of the estimation can be set flexibly corresponding to the objective

of the analysis and PR (c.f., section 3.6). Lower PR scenarios were generated from
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(a) Flow estimated by the proposed method. (b) Flow observed by the detectors.

(c) Density estimated by the proposed method. (d) Density observed by the detectors.

(e) Speed estimated by the proposed method. (f) Speed observed by the detectors.

Figure 6.10: Visualization of estimated flow, density, and speed.

random sampling of the probe vehicles. Fig 6.11a shows the density estimation result

at a resolution of 30 min and 4 km with a 1% PR; Fig 6.11b shows the density observed

by the detectors aggregated with the corresponding resolution. The estimation results

showed the tendencies of the traffic flow at lower resolutions. For example, the 0–4 km

section had a relatively dense traffic flow, while the 4–8 km section tended to have sparse

traffic at 15:00–15:30 and dense traffic at 15:30–16:00.
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(a) Density estimated by the proposed

method

(b) Density observed by the detectors

Figure 6.11: Visualization of estimated density with lower PR and lower resolution.

6.2.2 Effect of time–space resolution and PR

To quantify the relations among accuracy and precision of the estimation, time and

space resolution, and PR, we compared accuracy and precision indices for the estimation

scenarios. The bias and the root mean square percentage error (RMSPE) are employed

as accuracy and precision indices, where Bias(θ̂) = E[θ̂ − θ] and RMSPE(θ̂) =√
E[((θ̂ − θ)/θ)2]. Variable θ denotes a traffic flow variable (one of q, k and v) at a certain

time and space observed by the detectors; and variable θ̂ is one of those estimated from

the probe vehicle data. In addition to that, analytically expected bias and precision shown

in eq (3.21)–(3.24), that is, B̂ias(θ̂) and ̂RMSPE(θ̂), were estimated for every scenario.

The estimation was based on eqs (3.21)–(3.24) by estimating expectation of mean and

variance spacing and time headway from the probe vehicle data. The parameters set for

scenarios were PR P (%), time resolution ∆t (min), and space resolution ∆x (km). The

PR P was 3.5% or 0.2%. In scenarios where P = 3.5%, data from all of the probe

vehicles were used for the estimation. In scenarios where P = 0.2%, data from two

randomly sampled laps were used on average (i.e., the expected flow of probe vehicles

is 2 veh/h). The indices for the lower PR scenarios were calculated from the results of

20 estimation iterations. In each iteration, probe vehicle data for the estimation were
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composed of different combinations of probe vehicles’ laps whose PR was expected

to be the scenario parameter P. The time resolution ∆t was 5 min or 60 min, which

corresponded to the resolutions used for Japanese highway traffic management and traffic

census data, respectively. The space resolution ∆x was 0.5 km or 11 km, which roughly

corresponded to the usual detector interval and entire survey section length, respectively.

Table 6.2 summarizes the results of above estimation. Note that the mean values of

the flow, density, and speed observed by the detectors were 1255.2 veh/h, 40.7 veh/km

and 30.8 km/h, respectively.

The biases were affected by three different factors: the analytical characteristics of the

estimators (c.f., sections 3.3 and 5.1), biases in the probe vehicles’ driving behavior (c.f.,

sections 3.6 and 6.1.2), and biases in the spacing measurement method (c.f., section 6.1.2).

According to Table 6.2, amounts of the analytical expected biases, B̂ias(θ̂), were almost

negligible compared with the amounts of states for most of scenarios. It is also confirmed

by the simulation-based validation shown in section 5.1. However, the actual biases on the

flow and density calculated from the detector data were not identical to the analytically

expected ones. For example, most of the actual biases were negative while the analytical

expected one is positive. This can be explained by the probe vehicles’ driving behavior

biases as follows. In the (3.5%, 60 min, 11 km) scenario, whose analytically expected bias

is small, slightly underestimated the flow, density, and speed. This suggests that the probe

vehicles’ driving behavior was slightly biased compared with the rest of traffic (section

3.6): the probe vehicles had 10% slower speed than other vehicles on average, and they

had almost the same spacing with other vehicles on average. The amount of bias caused

by the spacing measurement method can be expected to be small as mentioned in section

6.1.2. As consequence, the results implied that the amount of bias decreases as P, ∆t

and ∆x increased, as the analytical results suggested. However, in the field experiment,

the probe vehicles’ driving behavior was slightly biased; therefore, the amount of bias is

significantly smaller than the analytical result. The results of simulation-based validation

shown in section 5.1 support this interpretation.

The tendencies in the precision RMSPE can be found as analytically expected; the
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Table 6.2: Precision and bias indices over estimation scenarios.

(a) Flow.
Scenario parameters Errors against the detector data Analytically expected errors

P (%) ∆t (min) ∆x (km) RMSPE(q̂) (%) Bias(q̂) (veh/h) ̂RMSPE(q̂) (%) B̂ias(q̂) (veh/h)

0.2 5 0.5 43 21.1 67 111.5

0.2 5 11 33 −48.7 25 26.6

0.2 60 0.5 25 −59.9 27 37.3

0.2 60 11 16 −159.0 13 29.6

3.5 5 0.5 26 −82.4 17 42.6

3.5 5 11 14 −151.9 7 5.2

3.5 60 0.5 14 −147.1 6 4.5

3.5 60 11 13 −161.4 3 1.2

(b) Density.
Scenario parameters Errors against the detector data Analytically expected errors

P (%) ∆t (min) ∆x (km) RMSPE(k̂) (%) Bias(k̂) (veh/km) ̂RMSPE(k̂) (%) B̂ias(k̂) (veh/km)

0.2 5 0.5 49 −0.1 69 4.1

0.2 5 11 45 2.1 27 3.3

0.2 60 0.5 28 −2.9 44 1.3

0.2 60 11 13 −1.1 17 1.1

3.5 5 0.5 28 −2.6 17 1.2

3.5 5 11 15 −0.6 11 0.5

3.5 60 0.5 14 −4.2 7 0.2

3.5 60 11 3 −1.4 4 0.1

(c) Speed.
Scenario parameters Errors against the detector data

P (%) ∆t (min) ∆x (km) RMSPE(v̂) (%) Bias(v̂) (km/h)

0.2 5 0.5 43 0.4

0.2 5 11 31 −0.3

0.2 60 0.5 23 0.7

0.2 60 11 11 −3.1

3.5 5 0.5 18 −0.7

3.5 5 11 13 −3.0

3.5 60 0.5 12 −0.6

3.5 60 11 10 −3.0
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precision improves as P, ∆t and ∆x increased. However, the actual precision was lower

than the analytically expected one in most of the scenarios. This is also able to be

explained by the probe vehicles’ driving behavior biases. Therefore, if biases in the probe

vehicle data did not exist (i.e., if the random sampling assumption were satisfied), RMSPE

is expected to improve.

6.2.3 Effect of traffic situation

Fig 6.12 compares the estimated variables and the corresponding values observed by the

detectors based on the results of the (3.5%, 5 min, 0.5 km) scenario. The colors represent

the number of cases. The estimated variables correlated well with the corresponding

values observed by the detectors in most cases. However, the relative error for the density

tended to be larger when the density was low. This may be due to the variances in the mean

headway. The variances tended to be larger at lower densities than at higher densities,

and the accuracy and precision may have suffered, as suggested by eqs (3.21)–(3.24) in

section 3.3. This means that the estimation accuracy and precision depend on the traffic

state, although the amount of error was not significant among traffic states from free-flow

to congested state.

Note that the data do not contain situations where the flow was low, such as sparse

traffic, extremely congested traffic, and signalized traffic. Therefore, the capabilities of

the method in such situations were not validated with this data. According to section 3.3,

the accuracy and precision may decrease for sparse traffic and signalized traffic because

of the larger variance in the mean headway distribution.

6.3 The method with CL

In order to investigate the applicability of the proposed method to the real world, the

proposed method was validated by using data collected from a field experiment at an

actual road.
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(a) Flow. (b) Density.

(c) Speed.

Figure 6.12: Scatter plots of estimated variables versus the corresponding values observed by the detectors.

6.3.1 Ground truth

For a comparison purpose, Fig 6.13a–d show the state (flow q, density k, speed v) observed

by the detectors (basically, they means the same state with Fig 6.10b, d, f) and cumulative

flow Ñ as time–space diagrams. The contour lines of Ñ were drawn at intervals of 200

veh. The cumulative flow was calculated from the flow observed by detectors with a

probe vehicle’s trajectory as a reference point. Discontinuities in the contour lines present

junctions (merging/diverging sections from/to other highway routes) in C1; these are

represented as arrows on the upper side in Fig 6.2. Note that the cumulative flow Ñ did

not always increase as t increased and x decreased when there were no discontinuities.

This is because of the on/off-ramps, lane-change by vehicles, and systematic errors in the

measurements of the detectors.
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6.3.2 Results

The estimation targets were the traffic state at certain time and space resolutions and the

cumulative flow in the survey section. The cumulative flow was calculated at 1 min time

intervals and 100 m space intervals according to eq (4.5). The density k̂ was calculated

based on central differences at 100 m intervals according to eq (4.6). In order to compare

the estimated states with the detector data, the estimated states were averaged at a time

resolution of 5 min and space resolution of 500 m. The proposed method requires the

positions of the discontinuity points to be specified. In this estimation, only junctions

were considered to be discontinuity points. Thus, on/off-ramps and lane-change were

ignored.

Fig 6.13e–h show the estimated traffic state (q̂, k̂, v̂) with a 5 min × 500 m resolution

and cumulative flow ˆ̃N as a time–space diagram. The contour lines of ˆ̃N were drawn

at intervals of 200 veh. Through a comparison with Fig 6.13a–d, the estimation can

be used to acquire the tendencies of the detectors’ observed variables (e.g., a queue

propagation from the 8 km point). Fig 6.14 compares the estimated variables and

detectors’ observed variables as scatter diagrams. According to the figures, the estimated

variables and detectors’ observed variables correlated well. However, the values tended to

be underestimated. One of the reasons was a bias in the probe vehicles’ driving behavior

(i.e., their driving behaviors tended to be safer, which meant a slower speed and larger

spacing than for other vehicles).

Table 6.3 summarizes the error indices of the traffic state estimation for different

PRs. The 0.2% PR was reproduced by randomly sampling all of the probe vehicles.

This corresponded to roughly 2 probe veh/h. The error indices of scenarios with a 0.2%

PR were calculated from 25 iterations under different sampling conditions of the probe

vehicles. According to the results, the estimation precision clearly increased with the PR.

Note that most of the scenarios underestimated the states, similar to Fig 6.14 and for the

same reasons. Table 6.4 compares results of the proposed method and the method without

considering the CL; the precision was improved with the proposed method.
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(a) Flow q observed by detectors. (b) Density k observed by detectors.

(c) Speed v observed by detectors. (d) Cumulative flow Ñ observed by the detectors.

(e) Flow q̂ estimated with proposed method. (f) Density k̂ estimated with proposed method.

(g) Speed v̂ estimated with proposed method. (h) Cumulative flow ˆ̃N estimated with proposed

method.

Figure 6.13: Time–space diagrams of traffic state and cumulative flow in field experiment.
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(a) Flow q. (b) Density k.

(c) Speed v. (d) Cumulative flow Ñ.

Figure 6.14: Scatter diagrams of estimated variables vs. detectors’ observed variables in field experiment.

Table 6.3: Error indices for scenarios with proposed method in field experiment.

PR Flow (veh/h) Density (veh/km) Speed (km/h)

P RMSPE(q̂) Bias(q̂) RMSPE(k̂) Bias(k̂) RMSPE(v̂) Bias(v̂)

0.2% 30% −158.9 39% −4.9 60% 0.9

3.5% 23% −133.9 30% −2.3 24% −2.1
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Table 6.4: Comparison between results of field experiment with the method with CL and the basic method.

P RMSPE(q̂) RMSPE(q̂withoutCL) PoI

0.2% 30% 43% 30%

3.5% 23% 26% 13%

Table 6.5: Difference between validations based on simulation experiment and field experiment.

The simulation experiment The field experiment

FIFO condition Always satisfied Not always satisfied

CL Always satisfied Not always satisfied

Traffic flow model Car-following model of Gipps (1981) Actual traffic

Traffic condition Synthetic scenario Actual traffic

Driving behavior of probe vehicles Not biased Slightly biased

Ground truth Available Detectors

RMSPE(q̂) at P=0.2% 59% 30%

RMSPE(q̂) at P=3.5% 42% 23%

Bias(q̂) at P=0.2% 151.0 veh/h −158.9 veh/h

Bias(q̂) at P=3.5% 83.6 veh/h −133.9 veh/h

PoI due to incorporating CL at P=0.2% 12% 30%

PoI due to incorporating CL at P=3.5% 27% 13%

6.3.3 Comparison between simulation experiment- and field

experiment-based validations

Table 6.5 summarizes the difference between the simulation experiment (section 5.2) and

this field experiment. The simulation experiment was conducted under traffic conditions

where the assumptions of the proposed method were always satisfied. On the other hand,

the field experiment-based validation had some limitations, such as slight violations of the

assumption. However, it allowed the proposed method’s characteristics to be validated

under actual traffic conditions. This advantage is important for validating the proposed

method’s practical characteristics because of the proposed method’s strong dependence

on the spacing, which was determined by a synthetic model (i.e., car-following model) in

the simulation experiment.
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The validation results suggest that the proposed method works well in an actual

traffic environment, although the assumptions of the proposed method (i.e., the CL) were

not exactly satisfied because of the on/off-ramps and lane-changing. For example, the

precision increased with the PR in both the simulation (Table 5.5) and field experiment

(Table 6.3). In fact, the proposed method showed better precision in the field experiment

than in the simulation experiment. Ironically, one of the reasons is existence of

lane-changing. They decrease the variance in the mean headway; then the estimation

precision of the cumulative flow improved (c.f., eq (3.23)).

The notable difference between the two validation is a sign of the biases. The

simulation-based validation (Table 5.5) and analytical approximation eq (3.21) showed

positive biases, while the field experiment-based validation showed negative biases. This

may be due to biases in the probe vehicles’ driving behaviors. The probe vehicles tended

to be slower than other vehicles, according comparison between the probe vehicle’s speed

and traffic speed observed by detectors.

Incorporating the CL improved the precision in both validations (Tables 5.6 and 6.4).

However, in the field experiment scenario, the PoI decreased as the PR was increased;

this tendency was the inverse of that in the simulation-based validation. This may be due

to violations of the assumptions. If a large amount of probe vehicle data is available (i.e.,

the traffic state can be estimated precisely even without the CL being incorporated) the

non-exact assumptions of the CL will negatively affect the precision.
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Traffic data are crucial for today’s civilization as they are required for understanding

behavior of traffic, developing traffic control measures, and executing the measures.

However, current situation of traffic data collection is far from perfect, due to practical

and theoretical limitations. Current Eulerian data collection method, namely, detectors,

only work at its installed point, while the number of installed points are limited. Current

Lagrangian data collection method, namely, GPS-equipped probe vehicles, cannot collect

quantity-related information. To address this issue, this dissertation proposed traffic state

estimation methods utilizing probe vehicle with spacing measurement equipment, which

can be applicable in the near future due to technological advancement.

7.1 Achievements

This dissertation proposed traffic state estimation methods utilizing probe vehicle with

spacing measurement equipment. First, our literature survey outlined that capability of

existing traffic data collection/state estimation methods by defining traffic data generally.

Second, methods of estimating traffic states and/or traffic flow model parameters from

the collected data were formulated and analytically investigated. Third, the formulated

methods are empirically validated based on data obtained via a field experiment in the

real world, as well as synthetic simulation experiments. As a result, methodology that

enables us to estimate traffic state for vast time–space domain, is established. It may

contribute to monitoring traffic in everywhere, enhancing its efficiency, and understanding

wide-ranging traffic dynamics in the near future.

In chapters 1 and 2, from both perspectives of academic and practical, a challenging

task remained in traffic and transportation field is clarified: traffic state estimation

with probe vehicles. Traffic state estimation—estimating flow, density and speed from

partially observed and/or partially unreliable data—is essential to understand and manage
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automobile-based movements of people and goods (i.e., traffic) in modern civilization.

Academic research on traffic and transportation engineering is identical to understanding

traffic; and managing traffic is important in terms of economical and environmental

efficiency in practical. However, estimating traffic state in anytime and anywhere is not

an easy task due to observation cost, required theoretical assumptions and privacy issues.

Fixed observation such as detectors cannot collect data from wide range with feasible

cost; and conventional probe vehicles require strong exogenous assumptions or violate

privacy to estimate traffic state. As possible solution for this problem is found in recent

advancement in vehicle technologies: on-vehicle spacing measurement equipment.

In chapters 3 and 4, methodology of estimating traffic state using probe vehicles

with spacing measurement equipment is formulated. The basic method in chapter 3 is

formulated as requires less exogenous assumptions as possible. It is consistent with

traditional definition in traffic flow theory. These characteristics enable the method

possible to be applied in various situations without theoretical discrepancies. Qualitative

characteristics of the method is analytically investigated in detail. The method’s accuracy

and precision are expected to improves as time–space resolution of estimation lowered

and probe vehicles penetration rate increased.

The methods in chapter 4 are formulated based on the basic method considering

additional assumptions that are often accepted by traditional traffic flow theory.

These assumptions are integrated to the methods in order to improve the proposed

methodology’s reasonability in common traffic situations, as well as to improve accuracy

and precision of its estimation. Namely, one of the methods considers a conservation

law of traffic. A conservation law is incorporated with the estimation method by utilizing

information of probe vehicles trajectories, which is ignored by the basic method. The

other method in chapter 4 considers a fundamental diagram of traffic as well: a functional

form of a fundamental diagram is given exogenously but the parameters are estimated

endogenously. A fundamental diagram is a key concept describing traffic dynamics (i.e.,

time–space transition of traffic state) and vehicle behavior. The method estimates traffic

states and fundamental diagrams simultaneously; then they are integrated by using a data

108



Chapter 7 Conclusions

assimilation framework.

In chapters 5 and 6, the proposed methodology is empirically validated; and practical

performance of the proposed methodology is clarified. In chapter 6, actual probe vehicle

data were collected via a field experiment conducted in an urban expressway in the

real world. The actual data are preferable for validating the proposed methodology

because spacing calculated by synthetic models is not always realistic. On the other

hand, the actual data contain unpreferable factors such as probe vehicle’s bias and

measurement errors. These unpreferable factors are complemented by validating the

proposed methodology using synthetic data generated by simulation experiment in

chapter 5. As a result of the validation, relation among the estimation methods’ precision

and accuracy, time–space resolution and penetration rate of probe vehicles is clarified

quantitatively. It is confirmed that the basic method’s characteristics are fairly consistent

with the analytical investigation. The effect of incorporating traffic dynamics into the

basic method is also confirmed. For example, the methods’ precision improves as

resolution lowered and penetration rate increased, as analytical results suggested. In

partially congested urban expressway, the basic method can estimate 5 min traffic volume

fairly well with 3.5% penetration rate; and it can estimate 1 hour traffic volume precisely

with 0.2% penetration rate (i.e., 2 probe vehicle/h/lane). The integration of a conservation

law and a fundamental could improve precision by 10–30%. As results, the methods’

applicability in actual traffic environment is shown*1.

Summary of the proposed traffic state estimation methods is as follows. The methods

estimate traffic state based on data collected by probe vehicles with spacing measurement

equipment. The basic method relies only on random sampling and error free assumptions.

It means that the method can be applicable to general traffic without theoretical

discrepancies. The other two methods employ existence of conservation law and/or a

fundamental diagram as additional assumption(s), in order to incorporate traffic dynamics.

Therefore, they can get reasonable results (i.e., accurate and precise estimation results) if

*1Another field experiment in an arterial road with mixed traffic also supports this. See appendix B for

its summary.
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the assumptions are actually satisfied. The validation result suggested that the proposed

methodology can estimate precise traffic state, which can be applicable for traffic control,

with few percentages of probe vehicle penetration rate in partially congested highway.

On the other hand, the proposed methods can estimate lower resolution traffic state like

hourly traffic volume, which can be applicable for transportation planning, with few probe

vehicles per hour.

7.2 Future directions

The future works to this dissertation are twofold: to sophisticate the proposed TSE

methods and to extend the proposed methodology for other general transportation fields.

7.2.1 The proposed TSE methods themselves

Following improvements are considerable to the proposed TSE methods.

Less biased estimators. The basic estimators (3.14) and (3.15) are biased. The

third-order term in the Taylor series may be valuable in formulating less biased

estimators, since the approximation was shown to be reasonable (c.f., sections 3.5,

5.1 and 6.2).

Unbiased estimations method that can be applied to biased probe vehicle data. It

will relax the random sampling assumption. It is an important topic because the

advanced technologies may cause biases in the probe vehicles’ driving behavior.

Use of information on the surrounding vehicles of the probe one, which are

expected to be not biased, may be valuable to obtain the unbiased estimation.

Adaptive estimation of FD parameters in the method with FD and CL. It will relax

the assumption of constant FD and improve estimation capability. To achieve this,

two approaches are considerable: automatic clusterization of region B based on

probe vehicle data and adaptive parameter estimation through data assimilation

(c.f.,樋口, 2011).
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Incorporation of Lagrangian traffic flow model. It will improve reasonability and

performance of a TSE method, since the Lagrangian coordinate system can utilize

information of vehicle trajectories (c.f., Yuan et al., 2012; Laval and Leclercq,

2013; Wada et al., 2015). However, it requires explicit consideration of non-FIFO

(multi-lane) and multi-class traffic, which is ignored by the existing studies.

Incorporation of node conservation law. It is required to make the method applicable

in networks; and requires merging/diverging models. Since probe vehicle data can

be available throughout a network (and some links may not have probe vehicles

at a moment), considering a node conservation law may improve reasonability and

performance of estimation (c.f., Castillo et al., 2013).

Consideration of practical problems. In a real world application, several problems

that are almost ignored by the proposed TSE methods may arise. For example,

first, leading vehicles cannot be always recognized because of excessive distances,

curves, etc., as described at section 3.6. Therefore, imputation methods for such

missing spacing are required. Second, exact vehicle length is not known. This

problem can be solved with on-line estimation of vehicle length distribution by

measuring it in neighbor lanes. Third, the proposed TSE methods may have low

precision at surface streets which have intersections, signals, parking, etc. Current

methods require lowering time–space resolution in order to get high precision under

such situations. However, low resolution information is sometimes useful, such as

hourly traffic volume and annual average daily traffic for planning purposes and

MFD for possible area-wide traffic managements. Nevertheless, if the signal timing

information is known, the information can be incorporated with the method with FD

and CL (c.f., Mehran et al., 2012; Wada et al., 2015).
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7.2.2 Transportation system estimation with travelers observing

other travelers

In chapter 1, it was mentioned that information is a key to enhance efficiency of a

transportation system; and the challenging problem is to collect information from the

entire system so that the system becomes understandable and controllable. As a solution

to the problem, this dissertation proposed methodology for estimating transportation

system’s states and traveler’s model parameters using travelers who observe other

travelers in the system.

This dissertation formulated and validated a special case of the problem, namely,

traffic state estimation, where travelers’ movement is one-dimensional (in spatial). This

methodology can be generalized for network-wide movement, two-dimensional move-

ment and day-to-day movement, such as traffic network, pedestrian space, multi-mode

urban transportation, and day-to-day learning/adaptation, at least in theoretical*2. It may

be worth to be investigated, though it will arise (have arose) a lot of difficult problems in

technological and ethical.

*2Simple examples exist for traffic networks and mixed traffic. See appendices A and B for their

summaries.
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This appendix*1 describes how the proposed method can be expanded for estimation of

network traffic. Specifically, OD flow estimation method using PVSME data is developed

and validated using simulation experiment.

OD flow, demand and matrix are valuable information for transportation planning.

Typical approach in existing studies is to estimate current (dynamic) OD matrix using

current partial collected traffic data and prior information on OD matrix, assuming UE

conditions (Bell, 1991; Yang et al., 1992; Wei and Asakura, 2013). Yamamoto et al.

(2009) applied GPS-equipped probe vehicle data for the approach by assuming FDs.

Other approach estimates dynamic OD flow using AVI data without prior information

on an OD matrix (Asakura et al., 2000).

In the spirit of this dissertation, the method should be containing assumptions as less

as possible (e.g., prior knowledge on OD matrix and route choice principles must be

eliminated). In fact, it is possible by simply expanding the basic method described in

chapter 3.

A.1 Formulation

Probe vehicles are assumed

• to measure position and spacing without errors,

• to be randomly sampled from all the vehicles, and

• to report their OD pairs.

The third condition is added compared to the basic method. Network schematics are

assumed to be known. An example of probe vehicle data under above conditions are

*1This appendix is mainly based on joint research with Prof. Yasuo Asakura, published in the 49th

Conference of JSCE Infrastructure Planning and Management (瀬尾・朝倉, 2014).
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1Orig.

2Orig./Dest.

3Dest.

12

23

Time

Space

Node 1

Node 2

Node 3

Figure A.1: Example of probe vehicle data in network

shown in Fig A.1. The network is consists of three nodes and two links. Node 1 is a

producing node, node 2 is a producing and attracting node, and node 3 is an attracting

node, of traffic; therefore, OD pairs are 1 → 2, 1 → 3 and 2 → 3. Red thick lines

represent probe vehicles’ trajectories; red filled areas represent observed time–space

regions by probe vehicles; black lines represent non-probe vehicles’ trajectories; solid

lines represent vehicles’ trajectories whose OD pair is 1 → 3; and dashed lines represent

vehicles’ trajectories whose OD pair is 1→ 2 or 2→ 3.

The objective is to estimate link flow who has an particular OD pair in a network. By

expanding the basic estimator of flow (3.14), estimator for flow per OD pair can be easily

defined as

q̂(uw)(A) =
∑

m∈P(uw)(A) dm(A)∑
m∈P(A) |am(A)| , (A.1)

where q(uw)(A) is a flow in a time–space region A whose OD pair is uw, and P(uw)(A)

is a set of probe vehicles in A whose OD pair is uw. By substituting A with A(t)
i j , that

is, a time–space region that covers link i j and time t in eq (A.1), a link OD flow can be

estimated—in the following part, the flow is represented as quw
i j if the time can be ignored.
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1

Orig.

2

Orig.

3

Dest.

4

Dest.

13, Highway

24, Arterial

Bottleneck

Figure A.2: Network for simulation experiment.

Table A.1: OD matrix for simulation experiment.

3 4

1 600 300

2 300 600

Note that following relation is satisfied by the definition:

q̂(A) =
∑
uw

q̂(uw)(A). (A.2)

A.2 Simulation experiment-based validation

Numerical characteristics of the proposed method are validated using simulation

experiment.

Aimsun (TSS-Transport Simulation Systems) is employed as a simulator; where

vehicle behavior is described by the car-following model of Gipps (1981), route choice

behavior is described by quasi dynamic user optimum, and vehicle departure is described

as Poisson arrival. The network schematics and OD matrix are shown in Fig A.2 and

Table A.1 that simulate a highway with a bottleneck and a parallel arterial road. The time

width of A is set to one hour.

An estimation result with 5% of PR is shown in Fig A.3; the estimated variables are

well corresponded to the ground truth. The RMSE of flow calculated from 10 iterations

is 36.6 veh/h.
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Figure A.3: Comparison between estimated flow and ground truth.

A.3 Remarks

This appendix demonstrated expansion of the basic method of chapter 3 to network flow

estimation. Only additional assumption is availability of information on probe vehicles’

OD pair. The validation results with small toy network suggested that the proposed

method works well. Even if number of combination of OD pairs are large, the method

may work by aggregating OD pairs appropriately.

Network traffic information such as OD flow is often employed for transportation

planning purposes, which require relatively low resolution data, such as hourly traffic

volume of a link and annual average daily traffic volume. As shown in section 6.2, data

from PVSMEs with quite low PR can be utilized for precise estimation of low resolution

traffic information. Therefore, this application of PVSME data may be feasible in the very

near future, compared with traffic control-motivated TSE.

As a future direction, the method with FD and CL can be expanded to network flow

estimation. To do so, a conservation law at a node should be considered so that traffic

states in unobserved links can be interpolated.
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with Mixed Traffic

In this appendix*1, we focus on mixed traffic flow formed by car (i.e., four-wheeled-

vehicle) and motorcycle which is very popular in many Asian cities of developing

countries. Under the mixed traffic condition, motorcycles in small sizes which do not need

to follow the lane disciplines, could travel alongside with lane-based driving cars, follow

obliquely a lead cars with short headways (Robertson, 2002), swerve away to overtake or

to avoid collision with the preceding cars (Lee et al., 2009; Nguyen et al., 2012, 2014).

Therefore, the occurrence of motorcycles may weaken the lane discipline of the cars and

could make the traffic flow difficult to be observed.

B.1 Field experiment environment

Pasteur Str. located in central area of Ho Chi Minh City, Vietnam was chosen for the

survey location, as shown in Fig B.1a. The road is a one-way road with 3 lanes: two outer

lanes for cars and one inner lane for motorcycles. However, cars and motorcycles could

share their lanes each other. The experimental road segment is approximately 1.5 km long

with 7 signalized intersections. Four fixed cameras were set at two different places on the

both sidewalk of the road, as illustrated by circles in Fig B.1a to obtain validation data

of car flow rate. Probe vehicles were asked to run on the road segment and return to the

starting point for the next round by using Nam Ky Khoi Nghia Str. parallel to this road.

Taxis were employed as probe vehicle, equipped with a GPS logger and a video

camera. A GPS logger is put inside the taxi to log GPS coordinates every 15 seconds to

a file. Then a logger application opens the file to provide data of position and speed. The

*1This appendix is mainly based on joint research with Dr. Long Xuan Nguyen, Dr. Takahiko Kusakabe,

Dr. Hong Tan Van and Prof. Yasuo Asakura, published in 19th HKSTS Conference (Nguyen et al., 2014).
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(a) Map of Pasteur Str. (b) View from probe vehicle

(c) Part of probe vehicle data

Figure B.1: Experiment at Pasteur Str.

video camera is fixed on the dashboard of the front passenger seat to record movies. The

images extracted from the movies contain information utilized for measuring distances

between the probe vehicle and other vehicles in its surroundings. An example of the

images and part of the probe vehicle data are shown in Fig B.1b and c, respectively.

The survey was conducted on March, 7th 2014 for 1.5 hours from 4:00 pm to 5:30

pm in the dry weather. Ten taxis equipped with video cameras and GPS loggers gathered

on the Tan Cang parking area near the survey location. At 4:00 pm, the probe vehicles

departed one-by-one every five minutes and ran on the course. In addition, four fixed

cameras on the sidewalk were used to observe the real traffic state of the traffic flow. At
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(a) 800 m point (b) 1350 m point

Figure B.2: Cumulative curves at Pasteur Str.

5:30 pm, the probe vehicles left the course at the same time and returned to the parking

area. Regarding the behaviors of taxi drivers, they were asked to run normally as desiring.

It means that each driver could run with their desired speed when the traffic flow is free,

or overtake the preceding vehicles to attain a higher speed when traffic become congested.

The flow of all the cars was about 600 veh/h. The flow of all the motorcycles was about

4500 veh/h.

B.2 Results of TSE on cars

The traffic state of cars was estimated using the basic method.

Fig B.2 shows cumulative curves at two locations of Pasteur Str. Dashed lines

represent ground truth obtained by road side observer, and blue lines represent estimated

values by all the probe vehicle with 5 min time resolution. According to the figure, the

rough tendency of estimated cumulative curves are close to observed ones. However,

errors in high resolution state such as 5 min flow are relatively large. This characteristic

is similar to the results of sections 5.1 and 6.2.

Table B.1 summarizes estimation performance at Pasteur Str. The same tendency to

sections 5.1 and 6.2 can be found: accuracy and precision improves as P, ∆t increases.
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Table B.1: Flow estimation results at Pasteur Str.

P ∆t (min) RMSPE(q̂) Bias(q̂) (veh/h)

0.2% 5 57.9% 63.8

0.2% 60 42.0% 91.0

1.0% 5 52.7% 52.9

1.0% 60 18.4% −11.4

2.5% 5 55.4% 14.3

2.5% 60 7.9% −20.5

However, in quantitatively, the precision is lower than the field experiment in the urban

expressway. It may be due to larger variance in headway due to the higher fluctuation of

the mixed traffic and signals.
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