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ABSTRACT 

 

Understanding pedestrian dynamics is crucial for appropriately designing pedestrian spaces, such as 

corridors and public squares. The pedestrian fundamental diagram (FD), which describes the 

relationship between pedestrian flow and density within a given space, is crucial for characterizing these 

dynamics. Pedestrian FDs are strongly influenced by the direction of pedestrian flow, such as uni- 

directional, bi-directional, or multidirectional. Many researchers have analyzed pedestrian FDs with 

individual models for these specific situations. In this study, we propose a novel model for pedestrian 

FDs that can consider more general distribution of flow direction by using directional statistics, which 

is the statistics that deals with angular data. First, an indicator describing the pedestrian flow situation 

is developed solely from pedestrian trajectory data using directional statistics. Then, by incorporating 

this indicator into a traditional pedestrian FD model, we propose a new FD model to represent various 

pedestrian flow situations. We applied the proposed model to pedestrian trajectory data and validated its 

performance. The results confirm that the model effectively represents the essential nature of the 

multidirectional pedestrian flow, such as the capacity reduction depending on direction distribution. 
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1. INTRODUCTION 

 

Pedestrian spaces like plazas and corridors have gained prominence in urban development. Evaluating 

pedestrian flow and performance of these spaces is critical. The Fundamental diagram (FD), which is 

the relation between flow and density initially used for vehicle traffic flow, is essential in understanding 

pedestrian flow characteristics and pedestrian space performance. 

 

Numerous studies discuss pedestrian FDs, highlighting factors influencing them, including flow types 

like uni-directional, bi-directional, and crossing (Vanumu et al., 2017). These flow types are illustrated 

in Figure 1. Observations suggest that bi-directional pedestrian flow has less flow than its uni-directional 

counterpart (Lam et al., 2003). A pedestrian FD model considering bi-directional flow phenomena was 

also developed (Flötteröd and Lämmel, 2015). Still, the crossing effects of angled pedestrian flows in 

various directions remain underexplored. For instance, impact on pedestrian flows crossing at angles on 

FD is unclear (Cao et al., 2017). In addition, in previous studies, different models were applied to 

different flow types. For instance, Fruin (1971) described FD for uni-directional and bi-directional flow 

with equations using different parameters. Consequently, to the authors' knowledge, no comprehensive 

pedestrian FD model exists for various flow types.  

 

Modeling a comprehensive pedestrian FDs needs to incorporate the angles of pedestrian flow to capture 

the flow types such as bi-direction and crossing. However, incorporating angles is challenging due to 

their unique nature: periodicity. For example, the difference between 1 degree and 359 degree is smaller 



than that between 1 degree and 180 degrees. This is completely different from ordinally 1-dimensional 

numbers, so that ordinal statistics cannot be applied to angles. To account for this challenge, this study 

employs directional statistics: a statistics branch dealing with angles (Mardia and Jupp, 1999). Although 

it has been used in several transportation studies recently (Boeing, 2019, Nagasaki et al., 2019, Nagasaki 

et al., 2020), its application in pedestrian behavior is unseen. 

 

The study's goal is to develop a pedestrian FD model applicable to various flow types, emphasizing 

angular statistics of pedestrian direction. To the authors' knowledge, this is the first attempt of its kind. 

Specifically, the study uses variables based on directional statistics as explanatory variables, 

representing the pedestrian flow angle's effect on FD. The model's validity is assessed using actual 

pedestrian trajectory data. 

 

 
Figure 1. Examples of flow types 

 

 

2. MODELING FD 

 

2.1 Unique features of pedestrian flow 

 

One of the unique features of pedestrian flow is that pedestrians move on a two-dimensional plane, and 

the moving direction of each pedestrian differs from each other. In this respect, pedestrian flow differs 

significantly from traffic flow, which flows in one-dimensional roads. Since FD was initially developed 

for traffic flow, a pedestrian FDs model must inherently accommodate this disparity. 

 

An important factor in modeling pedestrian FDs is that pedestrians often conflict with the others' 

movement. In that case, pedestrians are forced to move in undesirable directions, and the flow decreases. 

Hence, in scenarios where pedestrian flows cross at various angles, the flow rate is anticipated to be 

lower than in the case of uni-directional pedestrian flows due to an increased potential for conflicts. This 

phenomenon has been verified in previous research; Zhang and Seyfried (2013) conducted experimental 

work demonstrating that the maximum flow of bi-directional flow is inferior to that of uni-directional 

flow. 

 

Lane formation is another noteworthy phenomenon associated with pedestrian flows. Instances of lane 

formation have been documented in various experiments (Feliciani and Nishinari, 2016, Jin et al., 2019). 

Furthermore, Lee et al. (2016) showcased, through simulation, an improved capacity resulting from the 

occurrence of lane formation. Therefore, bi-directional flows in which lane formation could occur are 

more efficient than those in which multiple flows cross at other angles, such as a crossroads. 

 

In summary, the following two things can be noted about pedestrian flow. First, when flows cross at 

multiple angles, the flow decreases due to pedestrian conflicts. The second is that bi-directional flow is 
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less likely to reduce the flow rate than when flows cross at other angles due to lane formation. 

 

2.2 Angular variance 

 

Angular variance is a statistic that describes the degree of dispersion for angular data. Angular variance 

𝜈1 for 𝑁 angle data is expressed by the Eq. (1), 

 

𝜈1 = 1 − 𝑅̅1, (1) 

 

where, 
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2
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We explain the concept of angular variance 𝜈1. For the 𝑖th angle data 𝜃𝑖, (cos 𝜃𝑖 , sin 𝜃𝑖)𝑇 represents the 

unit vector for that angle. Therefore, (𝐶1̅, 𝑆1̅)𝑇 is the composite of 𝑁 unit vectors divided by its number 

of samples 𝑁. 𝑅̅1, which is the norm of (𝐶1̅, 𝑆1̅)𝑇, takes a value between 0 and 1, and it varies depending 

on the degree of dispersion of data. For example, 𝑅̅1 equals 1 when all data are toward the same angle, 

𝑅̅1 equals 0 when all data are toward opposite. Therefore, angular variance 𝜈1 = 1 − 𝑅̅1 represents the 

degree of dispersion of data. 

 

However, angular variance cannot distinguish random direction data from data with multiple peaks in 

opposite directions. For example, random data and data peaked at 𝜋/2  and 3𝜋/2  both have angular 

variances close to 1 and cannot be distinguished. 

 

Therefore, to distinguish such data, we define the 𝑝th-degree of angular variance 𝜈𝑝 as Eq. (4), (5) and 

(6). That is equal to angular variance obtained after multiplying the angle data by 𝑝. This makes 𝜈𝑝 small 

for an angle dataset with peaks every period 2𝜋/𝑝[rad]. For example, for bi-directional flow, 𝑣2 takes 

a small value because the direction of pedestrian movement has two peaks with period 𝜋. 

 

𝜈𝑝 = 1 − 𝑅̅𝑝, (4) 
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Examples of 𝑝th degree of angular variance are shown below. 𝑝th degree of angular variances were 

calculated for four different flow types, uni-directional flow, bi-directional flow, crossing flow A and 

crossing flow B. Uni/bi-directional flow means flow passing through a corridor uni/bi-directionally. 

Crossing flow A is defined as the case of bi-directional flow through a crossing, and crossing flow B is 

defined as the case of uni-directional flow through a crossing. Table 1 shows concepts of the four flow 

types and histograms of the pedestrian angles. The data used in this section are 10 seconds excerpt taken 

from the data used in the case study described in Chapter 3. Table 1 shows the value of 𝑝th degree of 

angular variance 𝜈𝑝 (𝑝 = 1,2,3,4) for each flow type. 𝑝th degree of angular variance could be confirmed 

to take small value when the angular data had peaks every 2𝜋/𝑝[rad] period. Second degree of angular 

variance 𝜈2 of bi-directional flow and fourth degree of angular variances 𝜈4 of crossing flow A took 

small values. In addition, crossing flow B had a smaller angular variance 𝜈1 than bi-directional flow and 

crossing flow A because the interval between peaks is narrow. In summary, uni-directional flow has 

small angular variance 𝜈1 and small second degree of angular variance 𝜈2, bi-directional flow has large 

𝜈1 and small 𝜈2, crossing flow A has large 𝜈1 and large 𝜈2 and crossing flow B has relatively small 𝜈1 



and large 𝜈2. Therefore, the four flow types can be distinguished by angular variance 𝜈1 and second 

degree of angular variance 𝜈2. 

 

Table 1. Angular variance of sample data 

Flow type 𝜈1 𝜈2 𝜈3 𝜈4 

Uni-directional 0.013 0.052 0.112 0.187 
Bi-directional 0.958 0.166 0.975 0.514 

Crossing A 0.958 0.947 0.931 0.459 
Crossing B 0.303 0.944 0.407 0.245 

 

2.3 Formulation of FD 

 

2.3.1 Base function 

 

One of the simple pedestrian FD models without the effect of the angles can be described as  

 

𝐽 = min(𝑢𝜌, 𝐶), (7) 

 

where 𝐽 is the flow, 𝑢 is the free flow velocity, 𝜌 the density and 𝐶 is the capacity. 𝑢𝜌 < 𝐶 in free flow 

regime and 𝑢𝜌 > 𝐶  in congested regime. The extreme congestion regime where flow decreases as 

density increases is omitted from Eq (7) because it will not be realized under ordinally pedestrian flow 

conditions. 

Eq. (7) is not smooth because it uses minimum function. In order to smoothly connect free flow regime 

and congested regime, log-sum-exp (LSE) function defined as Eq. (8) is applied. LSE function gives a 

smooth approximation of maximum function. By reversing the signs, it can also approximate minimum 

function. Eq. (7) is converted into continuous function by applying LSE function as Eq (9). 

 

LSE(𝑥1, … , 𝑥𝑛) ≡ log (∑ exp(𝑥𝑖)
𝑛

𝑖=1
) ≈ max(𝑥1, … , 𝑥𝑛). (8) 

 

𝐽 = −LSE(−𝑢𝜌, −𝐶) = − log(exp(−𝑢𝜌) + exp(−𝐶)). (9) 

 

2.3.2 Incorporating angles into FD function 

 

In the following, angular variance is incorporated in the model to consider the impact of crossing 

pedestrian flows as described in Section 2.1. When pedestrian flows cross, the flow decreases due to 

pedestrian conflicts. Pedestrian conflicts are expected to occur primarily at high density, i.e., in 

congested regime. Therefore, the crossing is assumed to affect capacity 𝐶.  

 

First, the impact of crossing is modeled. If the directions of pedestrians have single peak the impact of 

crossing seems to be small. On the other hand, if they are dispersing, the impact of crossing seems to be 

large. As described in section 2.2, angular variance 𝜈1  can represent the dispersion of angle data. 

Therefore, the magnitude of the capacity 𝐶 reduction due to crossing is controlled by angular variance 

𝜈1 in the proposed model. 

 

Next, the influence of lane formation is modeled. Lane formation occurs in bi-directional flow. For bi-

directional flow, the second degree of angular variance 𝜈2 takes a small value because the direction of 

pedestrian movement has two peaks with period 𝜋[rad]. Since the capacity 𝐶 is expected to increase 

when lane formation occurs, 𝜈2 is added to the model to represent this. 

 

Additionally, the model incorporates the impact of surrounding walls within the observation area. The 
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underlying assumption of the model is that an increased presence of walls corresponds to a heightened 

frequency of conflicts with walls, thereby resulting in a reduced capacity. To quantify the impact of 

walls, a metric termed the, a metric termed the “wall ratio” 𝑟 is defined as Eq. (10), where 𝐿 represents 

the total perimeter of the measurement area and 𝑙 denotes the length of the passable pedestrian section 

within it. For examples, when square measurement areas are assumed, 𝑟 equals to 0.5 for a corridor and 

𝑟  equals to 0 for a crossing. In the model, the capacity 𝐶  is assumed to decrease with wall ratio 𝑟 

increasing. 

 

𝑟 =
𝐿 − 𝑙

𝐿
 (10) 

  

Based on the discussion above, the capacity 𝐶 is assumed to decrease due to angular variance 𝜈1, second 

degree of angular variance 𝜈2 and wall ratio 𝑟. Therefore, the capacity is expressed as Eq. (11), where 

𝐶0 represents the capacity without the influence of 𝜈1, 𝜈2 and 𝑟. 𝛾1, 𝛾2 and 𝛾wall are parameters.  

 

𝐶 = 𝐶0(1 − 𝛾1𝜈1 − 𝛾2𝜈2)(1 − 𝛾wall𝑟) (11) 

 

Finally, as shown in Eq. (12), substituting Eq. (11) into Eq. (9) completes the pedestrian FD model 

proposed in this study. Figure 2 shows a schematic diagram of the models described in this section. 

 

𝐽(𝜌, 𝜈1, 𝜈2, 𝑟) = − log(exp(−𝑢𝜌) + exp(−𝐶0(1 − 𝛾1𝜈1 − 𝛾2𝜈2)(1 − 𝛾wall𝑟))) (12) 

 

 
Figure 2. Schematic diagram of the models 

 

3. CASE STUDY 

 

3.1 Data 

 

In this case study, “Corridor, unidirectional flow” dataset (DOI: 10.34735/ped.2013.6), “Corridor, 

bidirectional flow” dataset (DOI: 10.34735/ped.2013.5) and “Crossing, 90 degree angle” dataset (DOI: 

10.34735/ped.2013.4) were used. They are provided by a German research institute, Forschungszentrum 

Jülich. 

 

The pedestrian flows recorded in the dataset used in this study can be distinguished into four types, uni-

directional flow, bi-directional flow, crossing flow A and crossing flow B. These flow types are defined 

in Section 2.2. 

 



The flow 𝐽 and density 𝜌 are calculated from the trajectory data. The flow and density were obtained by 

applying the definition Edie (1963) as in Eq. (13) and (14), respectively. 𝐴 is the spatio-temporal regime 

in which the flow rate and density are measured. The time region was set to 10 seconds, and the spatial 

region to square areas in the center of the corridor or crossing. 𝑑𝑠 represents the distance that pedestrian 

𝑠 has traveled in spatio-temporal region 𝐴, and 𝑡𝑠 represents the travel time in the region. 

 

Figure 3 shows a scatter plot of the calculated flow 𝐽 and density 𝜌. The capacity of the FD is different 

depending on the flow types. Therefore, explaining this data with a single equation is difficult with 

existing models. 

 

𝐽 =
∑ 𝑑𝑠𝑠

𝐴
 (13) 

𝜌 =
∑ 𝑡𝑠𝑠

𝐴
 (14) 

 

  
Figure 3. Density-Flow plots 

 

In addition, angular variance 𝜈1, second degree of angular variance 𝜈2 and wall ratio 𝑟 needed to be 

calculated to validate the model. 𝜈1 and 𝜈2 were calculated in the following way. First, the angles at 

which each pedestrian moved were acquired every 0.2 seconds or 0.25 seconds. Second, the angle data 

were compiled every 10 seconds. This time region is same as flow 𝐽 and density 𝜌. Then, the angle 

variances were calculated by Eq. (3) and (6). Wall ratio 𝑟 was calculated as defined in Eq (10). 

 

80 data samples are taken for each flow type and 50 of them are train data and the other 30 are test data. 

 

3.2 Parameter Estimation 

 

The parameters of the model were estimated using the training data. Least squares method was applied 

to estimating. Next, the accuracy of the model was evaluated using test data. 

 

Table 2 shows the parameter estimation results. The signs of the estimates of 𝛾1, 𝛾2, and 𝛾wall were 

positive. This is consistent with the assumption in Chapter 3 that the angular variance 𝜈1, the second 

degree of angular variance 𝜈2, and the wall ratio 𝑟 decrease the capacity 𝐶. In addition, judging from 

the t-values and p-values, all parameters were significant. Table 3 shows the value of the coefficients of 

determination 𝑅2  and adjusted coefficients of determination 𝑅̅2  for the training and test data, 

respectively. The coefficient of determination was approximately 0.6, indicating that the model had 

some goodness of fit. 

 

Figure 4 shows the estimated FD. The projection of the estimated FD onto the flow-density plane can 

be drawn in numerous ways by changing variables 𝜈1, 𝜈2 and 𝑟. The FD projections representing to the 

four flow types are shown in Figure 4. Variables 𝜈1, 𝜈2  and 𝑟  for uni-directional flow were set to 

(𝜈1, 𝜈2, 𝑟) = (0, 0, 0.5), for bi-directional flow were set to (1, 0, 0.5), for crossing flow A were set to 
(1, 1, 0) and for crossing flow B were set to (0.3, 1, 0). The estimated FDs represent the variation of 

capacity due to flow types to some extent. In other words, this FD model could describe multiple flow 
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types with a single function. This was not possible with existing models. 

 

In bidirectional flow the estimated FD capacity appears to be higher than the data points especially at 

high density. This is because the second degree of angular variance 𝜈2 took large values at these data 

points due to collapse of lane formation. 

 

Table 2. Estimation results 

 Coefficient 𝑡-value 𝑝-value 

𝑢[m/s] 3.09 18.5 < 10−10 

𝐶0[ped/(m ⋅ s)] 1.53 15.2 < 10−10 

𝛾1 0.224 6.20 3 × 10−9 

𝛾2 0.210 3.37 9 × 10−4 

𝛾wall 0.435 4.74 4 × 10−6 

 

Table 3. Coefficient of determination 

 𝑅2 𝑅̅2 

Train data 0.654 0.646 

Test data 0.615 0.599 

 

 

 

 
Figure 4. Estimated FD 

 

 

4. CONCLUSIONS 

 

We proposed a model of pedestrian FDs that can be applied to various types of uni/multidirectional 

flows. The original feature of the proposed FD is that it captures types of flow directions in a 

comprehensive manner (i.e., it does not require rule-based model switching as in existing studies). 

Specifically, we employ the angular variance to characterize the flow directions. It enables the FD to 

explain the effect of flow directions to flow performance, such as efficient bi-directional flows and 

inefficient crossing flows. The model was estimated and validated using actual pedestrian trajectory data. 



The estimated values of the parameters were consistent with the assumptions of the modeling.  

 

The results suggested that the complicated features of pedestrian flow due to the multi-directionality can 

be successfully represented by the directional statistics. The current model is still simple and has several 

limitations, as it is the first attempt of this kind. For example, it does not explain direction-dependent 

flow rate. In addition, it is questionable whether the model has the generality to be applicable to other 

flow types, such as T-junctions. Extension of the proposed model to incorporate such phenomena is 

considerable. 
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